Foreword

Welcome to Baja SAE® 2018!

Each year, the Rules Committee strives to manage and update competition rules that are easy to understand, and that present students of all engineering disciplines and levels of experience with relevant real-world challenges.

The 2018 Baja SAE Rules Committee has put in an incredible amount of effort and work, clarifying, updating and making this document a better working piece.

For 2018, significant changes were made to the formatting of the rules to improve searching, readability, and flow. Other major changes include the prohibition of suspension seats, driver harness installation, and fuel system design. These changes are made within our goal of continuously improving safety and made from customer feedback to improve the technical inspection experience. In addition, a new cost procedure will be introduced. Finally, clarification and editorial changes were made throughout the document, including a host of new figures and tables.

While the format of the rules has changed, your team’s goal remains the same: to design, build, and demonstrate your design of an off-road vehicle for a fictional manufacturing firm. As always, read and reread the rules.

We have an exciting competition year ahead of us. I hope you’re up to the challenge and have assembled a dedicated team. As you know it takes volunteers and sponsors to make these events happen. In addition, the third piece is you, the team. Good luck, and I look forward to seeing you at the competition!
Baja SAE® 2018 - List of Rule Changes

Caution: The following is not an exhaustive list of the rule changes. Neither this list of updates and changes nor any summary is a substitute for thoroughly reading and understanding the rules. Teams should regularly check www.bajasae.net/go/news for news and updates.

Teams are required to read and comprehend the rules. Read the rules early and often.

Major Reformatting – The rules have undergone a significant reformatting and reorganization to improve structure, readability, searching, and flow.

Prototype Commercial Product – Requires teams to be prepared to demonstrate compliance to the design requirement.

Roll Cage – Updated roll cage rules regarding lateral cross members at Point R.

Roll Cage – Updated roll cage rules regarding interface of RHO and RRH tubes and how they affect driver clearances.

Roll Cage – Updated requirements of weld samples.

Driver Restraint – Anti submarine belt mounting instructions simplified and aligned with harness manufacturer instructions. Use of angles instead of distances improve technical inspection and reduce team inspection times.

Seats – Suspension seats are now prohibited due to wide variations in suspension seat quality and design, and consistent suspension seat failures.

Fuel System – Removable fuel tanks are now prohibited.

Fuel System – Fuel tank drip pans have been abolished in favor of more substantial splash shields and reduced volume of fuel available in fuel area.

Powertrain Guards – Updated rules regarding shielding and guarding requirements.

Engine Kill Switch – Updated rule with respect to mounting position.
Table of Contents

Part A: Administrative Regulations .. 7

* Article 1 - Baja SAE® Overview ... 7
* Article 2 - Competition Information .. 7
* Article 3 - Rules and Organizer Authority .. 9
* Article 4 - Participation Requirements .. 11
* Article 5 - Vehicle Eligibility .. 13
* Article 6 - Registration .. 14
* Article 7 - Report Submission ... 16

Part B: Technical Requirements ... 18

* Article 1 - General Design Requirements .. 18
* Article 2 - Engine ... 19
* Article 3 - Roll Cage ... 23
* Article 4 - Driver Restraint .. 45
* Article 5 - Driver Equipment ... 56
* Article 6 - Fuel System .. 58
* Article 7 - Vehicle Controls ... 61
* Article 8 - Cockpit ... 64
* Article 9 - Powertrain Guards .. 67
* Article 10 - Electrical System .. 69
* Article 11 - Tow Points ... 73
* Article 12 - Fasteners ... 74
* Article 13 - Vehicle Identification and Markings .. 76

Part C: Static Events .. 80

* Article 1 - Scoring Summary ... 80
* Article 2 - Technical Inspection ... 80
* Article 3 - Design Evaluation ... 82
* Article 4 - Cost Evaluation ... 86
* Article 5 - Sales Presentation ... 88

Part D: Dynamic Events ... 89

* Article 1 - Scoring Summary ... 89
* Article 2 - Practice ... 89
* Article 3 - Acceleration .. 90
* Article 4 - Traction ... 91
* Article 5 - Maneuverability .. 93
* Article 6 - Specialty Events ... 94
* Article 7 - Endurance .. 95
* Article 8 - General Event Procedures and Regulations ... 101

Part E: Appendices .. 113

* Article 1 - SAE Technical Standards .. 113
* Article 2 - List of Abbreviations .. 115
Table of Figures

Figure B-1: Engine, Governor, B&S Model 19	22
Figure B-2: Roll Cage, Bend and Member Termination	24
Figure B-3: Roll Cage, Primary Members (filled in black), Front Braced Frame	25
Figure B-4: Roll Cage, Primary Members (filled in black), Rear Braced Frame	25
Figure B-5: Roll Cage, Named Roll Cage Points, Rear Braced Frame	26
Figure B-6: Roll Cage, Named Roll Cage Points, Front Braced Frame	27
Figure B-7: Roll Cage, LC	28
Figure B-8: Roll Cage, RRH	29
Figure B-9: Roll Cage, LDB	30
Figure B-10: Roll Cage, RHO	31
Figure B-11: Roll Cage, Template Installation	32
Figure B-12: Roll Cage Template Drawing	32
Figure B-13: Roll Cage, Gussets	33
Figure B-14: Roll Cage, LFS	34
Figure B-15: Roll Cage, SIM	35
Figure B-16: Roll Cage, USM	36
Figure B-17: Roll Cage, FBM	37
Figure B-18: Roll Cage, FAB	38
Figure B-19: Roll Cage, Butt Joint Tube Sleeve	39
Figure B-20: Roll Cage, Welding Sample 1	40
Figure B-21: Roll Cage, Welding Sample 2	41
Figure B-22: Roll Cage, Required Joint for Removable Members	43
Figure B-23: Roll Cage, Required tube sleeve for drilled holes	44
Figure B-24: Driver Harness Schematic	45
Figure B-25: Driver Harness, SFI Tag, Old Style (Left), New Style (Right)	46
Figure B-26: Driver Harness, Shoulder Harness Vertical Position	47
Figure B-27: Driver Harness, Shoulder Harness Lateral Position	47
Figure B-28: Driver Harness, Shoulder Harness Lateral Restraint	48
Figure B-29: Driver Harness, Diagram of Proper Wrapping of Webbing	48
Figure B-30: Driver Harness, Lap Belt Angle	49
Figure B-31: Driver Harness, Lap Belt Tab Orientation	50
Figure B-32: Driver Harness, Anti-Submarine Belt Angle	51
Figure B-33: Driver Harness, Anti-Submarine Belt Redirection	53
Figure B-34: Driver Harness, Arm Restraints	54
Figure B-35: Seat Angle	55
Figure B-36: Driver Equipment, Snell M2010 Sticker	56
Figure B-37: Driver Equipment, Snell M2015 Sticker	56
Figure B-38: Driver Equipment, Neck Restraint	57
Figure B-39: Fuel System, Example of acceptable fuel tank mounting	60
Figure B-40: Fuel System, Splash Guard Installation Example	61
Figure B-41: Fire Extinguisher, Diagram of Clearance around Pull Knob (green)	67
Figure B-42: Powertrain Guard Extents	68
Figure B-43: Powertrain Guard Example	69
Figure B-44: Engine Kill Switch Mounting Position	71
Figure B-45: Tow Point, Inspection Tool Fitment .. 73
Figure B-46: Tow Point, Table of Tow Point Dimensions .. 74
Figure B-47: Tow Point, Rear Tab Dimensions .. 74
Figure B-48: Fasteners, acceptable markings .. 75
Figure B-49: Transponder Orientation .. 77
Figure B-50: Transponder, Mounting Location .. 77
Figure B-51: Vehicle Numbers, Dimensions ... 79
Figure C-1: Static Events, Table of Points .. 80
Figure D-1: Dynamic Events, Table of Points ... 89
Figure D-2: Endurance Event, Table of Penalties .. 99
Figure D-3: Endurance Event, Table of Bonus Points ... 100
Figure D-4: Signals and Signage, Green Flag ... 106
Figure D-5: Signals and Signage, Yellow Flag ... 106
Figure D-6: Signals and Signage, Red Flag ... 107
Figure D-7: Signals and Signage, Black Flag ... 107
Figure D-8: Signals and Signage, Checkered Flag .. 108
Figure D-9: Signals and Signage, Directional Arrow .. 108
Figure D-10: Signals and Signage, Control Zone Boundary ... 108
Figure D-11: Signals and Signage, Time Control Marshal ... 109
Figure D-12: Signals and Signage, Start Line .. 109
Figure D-13: Signals and Signage, Finish Line .. 110
Figure D-14: Signals and Signage, Stop Sign ... 110
Figure D-15: Signals and Signage, End Control Zone .. 110
Figure D-16: Signals and Signage, Begin Fuel Zone .. 111
Figure D-17: Signals and Signage, End Fuel Zone .. 111
Figure D-18: Signals and Signage, Begin Service Area .. 111
Figure D-19: Signals and Signage, End Service Area .. 112
Part A: Administrative Regulations

Article 1 - Baja SAE® Overview

A.1.1 - Program History
The Baja SAE® competition series originated at the University of South Carolina in 1976, under the direction of Dr. John F. Stevens. Since that time, the Baja SAE® Series has grown to become a premier engineering design series for university teams.

A.1.2 - Program Objective
Baja SAE® is an intercollegiate engineering design competition for undergraduate and graduate engineering students. The object of the competition is to simulate real-world engineering design projects and their related challenges. Each team is competing to have its design accepted for manufacture by a fictitious firm. The students must function as a team to design, engineer, build, test, promote and compete with a vehicle within the limits of the rules. They must also generate financial support for their project and manage their educational priorities.

A.1.3 - Design Subject
Each team's goal is to design and build a single-seat, all-terrain, sporting vehicle whose driver is contained within the structure of the vehicle. The vehicle is to be a prototype for a reliable, maintainable, ergonomic, and economic production vehicle which serves a recreational user market, sized at approximately 4,000 units per year. The vehicle should aspire to market-leading performance in terms of speed, handling, ride, and ruggedness over rough terrain and off-road conditions. Performance will be measured by success in the static and dynamic events which are described in the Baja SAE® Rules, and are subject to event-site weather and course conditions.

Article 2 - Competition Information

A.2.1 - 2018 Competitions
U.S. and Canadian Competitions

- Baja SAE Maryland
- Baja SAE Kansas
- Baja SAE Oregon

Competitions outside the U.S. and Canada

Note: Baja SAE® competitions held in Africa, Asia, South America, and Mexico are associated with SAE International but are organized and sponsored by their local hosts.

- Baja SAE Brazil, sponsored and hosted by SAE Brazil
- Baja SAE Korea, sponsored and hosted by Yeungnam University
- Baja SAE South Africa, sponsored by Sasol and hosted by the Gerotek Test Facilities
- Baja SAE Mexico, sponsored and hosted by SAE Mexico.
A.2.2 - Official Announcements
Teams are required to read the articles posted on www.bajasae.net/go/news published by SAE International and the other organizing bodies. Teams must also be familiar with all official announcements concerning Rules Clarifications released on the Downloads page on BajaSAE.net.

A.2.3 - Official Languages
The official language of the Baja SAE® Series is English. Document submissions, presentations and discussions in English are acceptable at all competitions in the series. Team members, judges, and officials at non-U.S. competition events may use their respective national languages for document submissions, presentations and discussions if all the parties involved agree to the use of that language.

- U.S. and Canadian Events - English
- Baja SAE Brazil – English and Portuguese
- Baja SAE Korea – English and Korean
- Baja SAE South Africa – English and Spanish
- Baja SAE Mexico - English and Spanish

A.2.4 - SAE International Technical Standards Access
A cooperative program of SAE International’s Education Board and Technical Standards Board is making some of SAE International’s Technical Standards available to teams registered for any North American Collegiate Design Series (CDS) competition at no cost. The Technical Standards referenced in the CDS rules, along with other standards with reference value, will be accessible online to registered teams, team members and faculty advisors. A list of accessible SAE Technical Standards can be found in the appendices, Part E : Article 1 - SAE Technical Standards.

A.2.4.1 - Eligibility
To access the standards your team must be registered for a competition in North America and the individual team member or faculty advisor wanting access must be affiliated to the team on SAE International’s website (www.sae.org).

A.2.4.2 - Access Procedure
Once registered, a link to SAE MOBILUS will appear to access the technical standards under “Design Standards” on your team’s profile page on sae.org, where all the required onsite team information is added. On SAE MOBILUS, you will have the ability to search standards either by J-number assigned or topic of interest such as brake light.
Article 3 - Rules and Organizer Authority

A.3.1 - Rules Authority

The Baja SAE® Rules are the responsibility of the Baja SAE® Rules Committee and are issued under the authority of the SAE International. Official announcements from the Baja SAE® Rules Committee, SAE International, National Technical Inspectors (NTI) or the other Baja SAE® Organizers shall be considered part of and have the same validity as these rules. Ambiguities or questions concerning the meaning or intent of these rules will be resolved by the Baja SAE® Rules Committee, National Technical Inspectors, or SAE International Staff during competition onsite.

A.3.2 - Rules Variation

Some sections of rules governing Baja SAE® events held outside the U.S. and Canada are specific to these competitions. Such variations are published on the individual websites.

A.3.3 - Rules Validity

The newest revision of the Baja SAE® Rules posted on the BajaSAE.net website and dated for the calendar year of the competition are the rules in effect for the competition. Rule sets dated for other years or older versions of the current year are invalid.

A.3.4 - Rules Compliance

By entering a Baja SAE® competition, the team members, faculty advisors and other personnel of the entering university agree to comply with, and be bound by, the rules and all rules interpretations or procedures issued or announced by SAE International, the Baja SAE® Rules Committee and other organizing bodies. All team members, faculty advisors and other university representatives are required to cooperate with, and follow all instructions from competition organizers, officials and judges.

A.3.5 - Rules Comprehension

Teams are responsible for reading, understanding and comprehending the rules in their entirety for the competition in which they are participating. The section and paragraph headings in these rules are provided to facilitate reading: they do not fully explain all the paragraph contents. Questions regarding rules may be submitted by registered users through the rules inquiry feature on BajaSAE.net.

A.3.6 - Rules Questions

A.3.6.1 - Privacy

By submitting a rules inquiry on BajaSAE.net, the submitter agrees that both question and the NTI’s answer can be reproduced and distributed by SAE International, in edited versions, in any medium or format anywhere in the world.

A.3.6.2 - Duplication

The National Technical Inspectors (NTI) will answer questions that are not already answered in the rules or FAQs or that require new or novel rule interpretations. For example, if a rule specifies a minimum dimension for a part, the NTI’s will not answer questions asking if a smaller dimension can be used.
A.3.6.3 - Submission
An electronic question submission system has been developed for the North American competitions. The current submission instructions are published on BajaSAE.net, accessible by clicking “Submit a Rules Question.”

A.3.6.4 - Documentation
Teams submitting questions are required to bring copies of the questions and answers with them to technical inspection.

A.3.6.5 - Response Time
Please allow a minimum of two (2) weeks for a response. The National Technical Inspectors (NTI) will respond as quickly as possible. However, responses to questions presenting new issues, or of unusual complexity, may take more than two weeks.

Note: Please keep in mind that final operating approval of any Baja SAE® vehicle can only be given onsite at the competition.

A.3.7 - Loopholes
It is virtually impossible for a set of rules to be so comprehensive that it covers all possible questions about the vehicle’s design parameters or the conduct of the competition. Please keep in mind that safety remains paramount during Baja SAE®, so any perceived loopholes should be resolved in the direction of increased safety of the competition.

A.3.8 - Participating in the Competition
Teams, team members as individuals, faculty advisors and other representatives of a registered university who are present onsite at a competition are “participating in the competition” from the time they arrive at the event site until they depart the site at the conclusion of the competition or earlier by withdrawing. Team members and faculty advisors who are present onsite are required to register with their team as part of their Fast Track Liability Waiver and obtain a liability wristband at the registration table.

A.3.9 - Violations of Intent
The violations of the intent of a rule will be considered a violation of the rule itself. Questions about the intent or meaning of a rule may be addressed to NTI or SAE International staff.

A.3.10 - Right to Impound
SAE International and the other competition organizing bodies reserve the right to impound any onsite registered vehicle at any time during a competition for inspection and examination by the organizers, officials and technical inspectors.

A.3.11 - General Authority
SAE International and the competition organizing bodies reserve the right to revise the schedule of any competition and/or interpret or modify the competition rules at any time and in any manner, that is, in their sole judgment, required for the safe and efficient operation of the event or the Baja SAE® series as a whole.

A.3.12 - Protests and Appeals
It is recognized that hundreds of hours of work are put into the design and construction of a vehicle. In the heat of competition, emotions may peak and disputes can arise. The organizers and SAE
International staff will make every effort to fully review all questions and resolve problems quickly and efficiently.

A.3.12.1 - Preliminary Review
If a team has a question about scoring, judging, policies or any official action it must be brought to the Baja SAE® Program Manager’s attention for an informal preliminary review.

If a team has a question about one of their results/scores they can file a Problem Report using the mobile.bajasae.net website while at the competition site. Additional details about how to file a Problem Report will be available at the competition site or on mobile.bajasae.net. A Problem Report is not a formal protest but should be initiated prior to a formal protest if possible.

A.3.12.2 - Cause
A team may protest any rule interpretation, score or official action (unless specifically excluded from protest) which they feel has caused some actual, non-trivial harm to their team, or has had a substantive effect on their score. Teams may not protest rule interpretations or actions that have not caused them any substantive damage.

A.3.12.3 - Format and Forfeit
All protest must be filed in writing and presented to the Baja SAE® Program Manager’s by the team captain or a designated student team member. In order to have a protest considered, a team must post a twenty-five (25) point protest bond, which will be forfeited if the protest is rejected.

Note: SAE International staff, judges or volunteers will not review any video footage as part of the protest.

A.3.12.4 - Protest Period
Protests concerning any aspect of the competition must be filed within 30 minutes of the end of the event to which the protest relates.

A.3.12.5 - Decision
The decision regarding any protest is final.

Article 4 - Participation Requirements

A.4.1 - Students

A.4.1.1 - Eligibility
Eligibility to compete is limited to undergraduate and graduate students to ensure this is an engineering competition rather than a race. Individual members of teams participating in this competition must satisfy the following requirements:

A.4.1.2 - Student Status
Team members must be enrolled as degree seeking undergraduate or graduate student in a college or university. Team members who have graduated during the last seven (7) month period prior to the competition remain eligible to participate.
A.4.1.3 - Society Membership
Team members must be members of at least one of the following societies:

- SAE International or an SAE International affiliate society
- ATA
- IMechE
- VDI

Proof of membership, such as a membership card, may be required at the event registration and check-in.

Students who are members of one of the societies listed above are not required to join any of the other societies in order to participate in any SAE International competition, but they must have a Customer Account on SAE.org. For more information, reference http://students.sae.org/cds/bajasae/faq/. Those interested may join SAE International at: http://www.sae.org/membership/join.

A.4.1.4 - Age
Team members must be at least eighteen (18) years of age at the time of the competition.

A.4.1.5 - Driver’s License
Team members who will drive a competition vehicle at any time during a competition must hold a valid, government issued driver’s license. All drivers must present their driver’s license at the time of Technical Inspection.

A.4.1.6 - Fast Track Liability Waiver
All onsite participants and faculty are required to sign their team’s Fast Track liability waiver prior to or upon registering onsite.

A.4.1.7 - Insurance
Individual medical and accident insurance coverage is required and is the sole responsibility of the participant.

A.4.2 - Faculty Advisors

A.4.2.1 - Faculty Advisor Status
Each team is expected and encouraged to have a Faculty Advisor appointed by the university. The faculty advisor is expected to accompany the team to the competition and will be considered by competition officials to be the official university representative.

A.4.2.2 - Age
Faculty Advisors must be at least eighteen (18) years of age at the time of the competition.

A.4.2.3 - Fast Track Liability Waiver
All onsite participants and faculty are required to sign a liability waiver prior to or upon registering onsite.

A.4.2.4 - Faculty Advisor Responsibilities
Faculty Advisors are expected to advise their teams on general engineering and engineering project management theory.
A.4.2.5 - Faculty Advisor Limitations
Faculty advisors may not design any part of the vehicle nor directly participate in the development of any documentation or presentation.

Faculty Advisors may neither fabricate nor assemble any components nor assist in the preparation, maintenance, testing or operation of the vehicle.

Faculty Advisors are not allowed to participate during technical inspection, cost audit or design presentations. The team captain or other designated members of the team must do all the presenting although Faculty Advisors may silently observe.

Faculty Advisors may not design, build or repair any part of the vehicle.

A.4.3 - Visa Requests
Affiliated team members will have the ability to print out a Registration Confirmation Letter for the individual event(s) that they are attending. Once a student team member affiliates themselves to their team’s profile page on sae.org under their individual edit section. They will have the opportunity to print out their personalized letter with the following information: Student’s Name, School’s Name, the CDS Event Name, Official Dates and Location(s).

Caution: SAE International cannot and will not intervene with, call, send personal letters to, the State Departments, Embassies or Consulates of the United States or other governments on behalf of any meeting or event participant.

Teams requiring visas to enter to the United States are advised to apply at least sixty (60) days prior to the competition. Although most visa applications seem to go through without an unreasonable delay, occasionally teams have had difficulties and in several instances visas were not issued before the competition.

Caution: Apply early for visas.

Neither SAE International staff nor any competition organizers are permitted to give advice on visas, customs regulations or vehicle shipping. Nor will they intervene on either matter concerning the United States or any other country.

For additional information, visit http://www.sae.org/events/travelvisa.htm.

Article 5 - Vehicle Eligibility

A.5.1 - Student Created
The vehicle and associated documentation must be conceived, designed, manufactured and fabricated by the team members without direct involvement from professional engineers, faculty or professionals in the off-road and racing communities.

A.5.2 - Kit Vehicles Prohibited
Vehicles fabricated from a kit or published designs are ineligible to compete. Vehicles which have been professionally fabricated will be disqualified from the competition or receive a penalty. If a team does not have access to machine shop facilities, the frame can be professionally fabricated without a penalty.
attached. Lack of access must be documented (letter from the faculty advisor, copy of policies which prohibit machine shop access, etc.).

Any outsourcing must be reflected in cost reporting with supporting receipts or invoices from your outsourced vendor.

A.5.3 - Prefabricated Subassemblies
These rules do not exclude the use of prefabricated or modified sub-assemblies.

Article 6 - Registration

A.6.1 - Individual Registration

A.6.1.1 - Affiliation
All participating team members and faculty advisors must be sure they are individually affiliated to their respective school/university on the SAE International website (www.sae.org) through their team’s profile page for each event they are participating in.

A.6.1.2 - SAE Membership
If you are not an SAE International member, go to http://www.sae.org/membership/join and click Join SAE for Students. Please note all student participants must be SAE International members to participate in the events; this is not mandatory for faculty advisors. Faculty members who wish to become SAE International members should choose an option under the “Professional Membership” link.

A.6.1.3 - Faculty Advisor Affiliation
All faculty advisors who are not SAE International members are required to sign up for an SAE International Customer Account using their email address. Contact collegiatecompetitions@sae.org and provide the Customer Number obtained on my.sae.org and the university name to be correctly affiliated to the university.

A.6.1.4 - Student Affiliation
All student participants and faculty advisors must affiliate themselves to the appropriate team(s) online. To affiliate, refer to http://students.sae.org/cds/bajasae/faq/.

A.6.1.5 - Required Information
Once students and faculty advisors have associated to their respective university team(s), all affiliated students and faculty must complete all requested information (i.e. Emergency Contact Information) on the team registration page. All team members, including Faculty Advisors, must affiliate prior to competition.

A.6.2 - Team Registration

A.6.2.1 - Online Registration
North American competition registration for Baja SAE® events held in North America must be completed online. Online registration must be done by either (a) an SAE International member or (b) the official faculty advisor connected with the university and recorded as such in the SAE International database.
A.6.2.2 - Restriction
Registration for Baja SAE® competitions held in North America is restricted to one (1) vehicle per university.

A.6.2.3 - Waiting List
- Baja SAE Maryland is limited to 100 vehicles. (Plus 60 waitlist teams)
- Baja SAE Kansas is limited to 100 vehicles. (Plus 60 waitlist teams)
- Baja SAE Oregon is limited to 100 vehicles. (Plus 60 waitlist teams)

When any of the Baja SAE® Events (North American events) have reached their maximum team limit, there will be a waitlist available for teams to sign up. The waitlist will remain open until all spots are filled or the registration deadline of November 13, 2017 reached. For more information on the waitlist, refer to http://students.sae.org/cds/bajasae/faq/.

A.6.2.4 - Registration Dates
Teams must register for each Baja SAE® competition they intend to enter by the specified date on the action deadline webpage for each competition.

A.6.2.5 - Fees
For North American competitions, payment for registration fee must be initiated within 48 business hours of registration.

A.6.2.6 - Withdrawals
Registered teams for the Baja SAE® North American event that find that they will not be able to attend the competition are required to officially withdraw by emailing collegiatecompetitions@sae.org no later than (4) weeks before the event. Registration fees are NOT refundable or transferable. For events outside the U.S. and Canada, please visit the respective competition website for contact information.

A.6.2.7 - Failure to Meet Deadlines
All teams, both Registered and Waitlisted, for any Baja SAE® competition are required to submit all required documents prior to the competition. The required documents provide evidence their car complies with the frame rules, supports the technical inspection process, and provides material that the Cost and Design event judges need to evaluate the team during the competition. When these documents are not submitted, the judges cannot properly assess the vehicle or the team.

Teams that do not submit Cost, Design, or Technical documents typically do not come to the competition. Teams that do not notify the SAE CDS personnel they are withdrawing from competition create the following problems:
- Teams are still included in the static event schedules and judging time is wasted.
- The unused registration slot cannot be offered to a team on the waitlist.

Additionally, failure to submit the required Cost, Design, and Technical Documents is a clear violation of the rules. Any blank document submitted to subvert the submission date will be treated as failure to submit.

Therefore, it is the policy of SAE International that failure to submit the required Cost, Design or Technical documents within five (5) days of the deadline will constitute an automatic withdrawal of your team. Your
team will be notified by the 5th day that SAE has not received the documents and after six (6) days the team’s registration will be cancelled and no refund will be given.

A.6.2.8 - Shipping and Customs

SAE International and the Baja SAE® organizers strongly recommend international teams ship their vehicles early in order to allow enough time to compensate for any delays that may occur in clearing Customs in the country of the competition. Please check with the Customs Service concerning the regulations governing the temporary importation of vehicles. Teams may want to consider using the services of a freight forwarder who is familiar with the international shipping of racing vehicles.

Vehicle shipments by commercial carrier must comply with the laws and regulations of nations from which, and to which, the vehicle is being sent. Teams are advised to consult with their shipping company or freight forwarder to be sure their shipment fully complies with all relevant customs, import/export and aviation shipping requirements.

Shipments must be sent in accordance with the guidance for each specific competition. Some organizers are unable to accept shipments prior to the event or at all. Consult the official event website at sae.org for details specific to the individual competition site.

Vehicle shipping procedures for the U.S. and Canadian competitions are published on the Baja SAE® website for each competition and are incorporated into these rules by reference. Neither SAE International staff nor the Baja SAE® competition organizers are permitted to provide advice on U.S. Customs matters.

Article 7 - Report Submission

A.7.1 - Required Submissions

All required reports shall be submitted through BajaSAE.net. The standard forms that are required for documentation and submissions at Baja SAE® competitions have been relocated to www.bajasae.net/go/downloads.

A.7.1.1 - Sign Up Procedure

To create an account for BajaSAE.net, click “Create an Account,” and follow the instructions. All teams require a Team Captain on BajaSAE.net in order to approve additional members. Once the team captain has created an account it will remain valid until the team becomes dormant or no longer registers to compete.

Note - There may be a delay of up to three (3) business days between the time your team registers for a competition and BajaSAE.net recognizes the validity of your authentication number.

A.7.1.2 - Responsibilities and Restrictions

Each team must have at least one person with an account at BajaSAE.net and identified as the Team Captain. The Team Captain(s) have unique responsibilities on the site including accepting other team members for site access. Until the captain accepts a member’s signup request that person cannot upload team documents, view team documents, or ask rules questions. Team captains automatically have the same roles and privileges as their team members.
Team Member Restrictions - Team members must be approved by the Team Captain or the Faculty Advisor before being able to view or upload team documents.

Note - All team members are not required to be affiliated on bajasae.net, just the person uploading documents or asking rules questions.

Uploading Documents - All team members and the team captain have equal authority to upload and/or replace documents in the name of the team.

Document Access - Uploaded documents can only be viewed by (1) members of the submitting team, (2) authorized judges, technical inspectors and officials and (3) CDS staff.

Reminder - The website does not know what is intended for submission or what the submitter is thinking. Anything a team uploads to the site is considered to be an official action by the team.

SAE.org Website Actions
1) Update Team Website & Social Media
2) Pay Your Team Invoice
3) Affiliate all members through Team Profile
4) Reprint your Team Invoice
5) Print Registration Confirmation Letter
6) Print Participation Certificate
7) Print Fast Track Roster

BajaSAE.net Website Actions
1) Monitor News
2) Affiliate those Submitting Documents
3) Affiliate those Asking Rules Questions
4) Ask Rules Questions
5) Submit Required Documents

A.7.1.3 - Process
Teams competing in any North American Baja SAE® competition must submit the following documents online through **BajaSAE.net**.

- Cost Report
- Cost Documentation
- Design Report
- Design Specification Sheet
- Frame Documentation Package

Note: The Design Report and the Design Spec Sheet, while related, are independent documents and must be submitted as two (2) separate files.

Documents may be uploaded to the website from the time the participant’s Baja SAE® online account has been created and approved until the "No Submissions Accepted After Date" (which is 5 days after the due date). Submissions may be replaced with new (updated) uploads at any time before the due date without penalty. Teams have the option to replace uploaded documents with a new file at any time. However:
• Replacements after the "Submission Due Date" and the "No Submissions Accepted After Date" such are classified as late submissions and the appropriate penalties will be applied.
• Documents may not be uploaded or replaced following the "No Submissions Accepted After Date."
• The latest and most recent document uploaded will be the document evaluated by judges.

A.7.1.4 - Deadline
Submissions must be received by the due date listed on the Action Deadlines on sae.org. Submission will be acknowledged on the submission website with a visual indicator. Teams should have a printed copy of this acknowledgement available at the competition as proof of submission in the event of discrepancy.

A.7.1.5 - Late Submission / Non-Submission Penalty
Late submission or failure to submit the Design Report and/or Cost Report will be penalized ten (10) points per day. If either report is received more than five (5) days late it will be classified as "Not Submitted" and your team’s registration will be cancelled.

A.7.1.6 - Unsatisfactory Submission
At the discretion of the judges, teams who submit any report that, in the opinion of the judges, does not represent a serious effort to comply with the requirements as listed in this rules will also not compete in the design and/or event, but may at the design judges’ discretion receive between five (5) and twenty (20) points for their efforts.

Part B : Technical Requirements

Article 1 - General Design Requirements

B.1.1 - General Requirements
The vehicle may only use one Briggs & Stratton engine of a model specified below. The vehicle must be capable of carrying one (1) person 190 cm (75 in.) tall weighing 113 kg (250 lbs).

B.1.2 - Ergonomic Design
As a prototype of a commercial product, the design intent must accommodate drivers of all sizes from the 95th percentile male (in the country in which the competition is held) to the 5th percentile female. All drivers shall meet the roll cage minimum clearances, and fit into a comfortable driving position, while wearing the entire required driver’s equipment. All drivers shall be able to comfortably reach all of the vehicle’s controls.

Teams shall be prepared to demonstrate the compliance to this requirement in the design event.

B.1.3 - Good Engineering Practices
Vehicles entered into Baja SAE® competitions are expected to be designed and fabricated in accordance with good engineering and construction practices.
B.1.4 - All-Terrain Capability

B.1.4.1 - Terrain Type
The vehicle must be capable of safe operation over rough land terrain including obstructions such as rocks, sand, logs, steep inclines, mud, and shallow water in any or all combinations and in any type of weather including rain, snow and ice.

B.1.4.2 - Clearance and Traction
The vehicle must have adequate ground clearance and traction for the terrain type at the competition.

B.1.5 - Vehicle Configuration
The vehicle must have four (4) or more wheels not in a straight line.

B.1.6 - Limitations
Width: 162 cm (64 in) at the widest point with the wheels pointing forward at static ride height.

Length: Unrestricted.

Weight: Unrestricted.

Note: Teams should keep in mind that Baja SAE® courses are designed for vehicles with the maximum dimensions of 162 cm (64 in.) width by 274 cm (108 in.) length.

Article 2 - Engine

B.2.1 - Required Engine
For over 40 years, the Briggs & Stratton® Corporation has generously provided engines to Baja SAE teams.

To provide a uniform basis for the performance events, all vehicles shall use the same engine: an unmodified, four-cycle, air cooled, Briggs & Stratton 10 HP OHV Vanguard Model 19.

B.2.2 - Engine Orders
Teams in North America (United States, Canada, and Mexico) can purchase their engines through their Team Profile on sae.org. For more information, visit http://students.sae.org/cds/bajasae/faq/

B.2.3 - International Orders
Briggs & Stratton will not ship engines outside of the continental United States or Canada.

International orders must follow one of the shipping methods listed below. Exporting is not an option. If for any reason the engine fails to arrive, due to a team’s third party shipper, it will not be replaced.

Teams from countries outside of the continental U.S. and Canada will need to have their engines shipped to either one of the following:

- The organizer of the competition they have registered for.
- An address in the U.S. provided by the participating team.
Teams requesting that engines be shipped to the organizer will be responsible for installing the engine prior to technical inspection and will need to bring the tools necessary to install the engine onsite. Teams should also get permission from the organizer to use their facility if necessary.

B.2.4 - Additional Engines

Teams may purchase additional Briggs & Stratton engines directly through their local Briggs & Stratton dealer. There is no special discount or special purchase price for additional engines.

B.2.5 - Hybrid Electric Systems

Hybrid-electric drivetrain systems are explicitly prohibited.

B.2.6 - Energy Storage Devices

B.2.6.1 - Hydraulic

Hydraulic accumulators are the only type of stored energy device that may be incorporated into the vehicle for propulsion purposes. Hydraulic power systems must be properly shielded and documentation of the shielding made available for review.

B.2.6.2 - Kinetic

Kinetic energy storage devices, such as flywheels, are explicitly prohibited.

B.2.6.3 - Electric

Batteries or other electric energy storage device for vehicle propulsion are explicitly prohibited. Hybrid-electric vehicle propulsion systems are explicitly prohibited.

B.2.6.4 - Compressed Gas

Compressed gas systems for vehicle propulsion are explicitly prohibited.

B.2.7 - Engine Requirements and Restrictions

To provide a uniform basis for the performance events, all vehicles shall use the same engine: an unmodified four-cycle, air cooled, Briggs & Stratton 10 HP OHV Vanguard Model 19.

The required engine must remain completely stock in all ways.

Note: Blueprinting (reworking an engine to a manufacturer’s exact specifications) is considered to be a modification and is explicitly prohibited.

The only engine model accepted at all 2018 Baja SAE® U.S. and Canadian competitions is Briggs & Stratton model number: 19L232-0054-G1.

Note: No other engine models will be accepted. No engine models from previous competition years will be accepted.

The new Model 19 engine is not equipped with an engine mounted fuel tank. A Briggs and Stratton fuel tank and cap are required to be procured separately from the engine. The fuel tank shall be mounted separately from the engine.

Teams can use approved fuel tanks and caps or order parts below:

Fuel Tank - 799863
Fuel Cap - B4325GS

B.2.7.1 - Replacement Parts
Only Original Equipment Briggs & Stratton replacement parts may be used. Consumable parts may be ordered on the Briggs & Stratton Web site: http://www.briggsandstratton.com or procured from a Briggs & Stratton dealer.

B.2.7.2 - Piston Rings
Only standard size, original Briggs & Stratton piston rings may be used.

B.2.7.3 - Intake Ports
No cleaning or removing of aluminum flashing from intake or exhaust ports may be done.

B.2.7.4 - Valves
Any valve clearance setting between tappet and valve stem may be set. Valves may be lapped to ensure proper sealing. Intake valve seat angle must remain at 45 deg. Exhaust valve seat angle must remain at 45 deg.

B.2.7.5 - Shafts and Rods
The camshaft, crankshaft, connecting rod, and flywheel must not be altered or modified.

B.2.7.6 - Spark Plugs
The only permitted spark plug is RC12YC. No other spark plugs are permitted.

B.2.7.7 - Armature
Any armature air gap setting is allowed. The armature mounting holes shall not be slotted or elongated to increase or retard ignition timing.

B.2.7.8 - Flywheel Rotation
The flywheel shall not be rotated in order to advance or retard timing.

B.2.7.9 - Engine Governor
Each engine is equipped with a speed governor. Each governor will be set at the competition to 3,800 RPM or lower maximum speed. Briggs and Stratton may perform random inspections of the governor on any vehicle and these may be conducted at any time. Any attempt to defeat the engine governor so as to increase the engine speed is grounds for immediate disqualification.

Caution: Governor setting not to exceed 3,800 RPM
The governor operation must remain free of obstructions at all times. Governor area must be shielded from debris. A Briggs & Stratton part number 697326 Control Cover may be used. Teams may also fabricate a control cover provided the part has equivalent function to 697326.

The governor spring shall be engaged with, and only with, hole five (5) per Figure B-1.

Governor spring part number: 264080.
B.2.7.10 - Idle Speed
Any idle speed adjustment is allowed, Briggs & Stratton recommends 1,750 RPM ± 100 RPM.

B.2.7.11 - Air Cleaner
The air intake cleaner may be relocated, but Briggs & Stratton parts must be used to relocate the air filter. Parts 592251 (remote kit), 695329 (choke shaft), and 699960 (base) are permitted. No previous part versions are allowed. The supplied intake air hose may be shortened to a minimum of 152 mm (6.0 in.). No other type of hose will be allowed. A team may also add additional pre-filters to the top of the air intake. These parts must be included on the cost report. Any changes made to the air filter will have to pass inspection by Briggs & Stratton.

Note: Relocation of air filter or cleaner housing may decrease engine performance.

B.2.7.12 - Carburetor

B.2.7.12.1 - Jetting
Modifying the carburetor jet or re-jetting of the carburetor is prohibited.

B.2.7.12.2 - Float
The carburetor float is not adjustable and may not be modified.

B.2.7.12.3 - Venturi
Modification of the carburetor venturi is prohibited.
B.2.7.13 - Exhaust System

B.2.7.13.1 - Muffler Relocation
If the vehicle design requires an exhaust system reconfiguration to keep it from impinging on part of the vehicle, the re-routing must be done using tubing having an ID of 32 mm (1.25 in.). Any remote mounted exhaust system must use the original muffler and must be securely mounted so that it does not vibrate loose during the competition.

B.2.7.13.2 - Muffler Support
Supports for the exhaust pipe and muffler are required. Supports must be attached exclusively to the engine.

B.2.7.13.3 - Exhaust Pipe Port
Exhaust pipe may not protrude inside of the exhaust port, so as to alter port configuration.

B.2.7.13.4 - Exhaust Pipe Length
Any exhaust pipe length is allowed, however pipe length may not be adjustable.

B.2.7.13.5 - Exhaust Pipe Continuity
No extra holes or tubes are allowed in the exhaust pipe. One inlet and one outlet are required.

B.2.7.13.6 - Exhaust Durability
The exhaust pipe and muffler must be durable, resilient, completely intact and functional throughout the competition. Any vehicle found to have a loose or leaking exhaust system will be removed from competition until the issue can be corrected.

B.2.7.14 - Starter Rope Extension
The starter rope may be extended to accommodate the driver starting the engine while seated.

B.2.7.15 - Alternator
The engine may be fitted with an approved alternator to generate electrical power. The only alternators which are permitted are those which Briggs & Stratton specifies for the engine model. Available alternators are sized in 3, 10, and 20 Ampere versions.

Article 3 - Roll Cage

B.3.1 - Objective
The purpose of the roll cage is to maintain a minimum space surrounding the driver. The cage must be designed and fabricated to prevent any failure of the cage’s integrity during normal operation or during a collision or roll over.

B.3.2 - Roll Cage Structure
The following section outlines the requirements of the physical members and joining methods of the roll cage.

B.3.2.1 - Member Requirements
Roll cage members must be made of steel tube, and may be straight or bent. Straight members may not extend longer than 1016 mm (40 in.) between Named Points. Bent members may not have a bend.
greater than 30 deg. that does not occur at a Named Point; and may not extend longer than 838 mm (33 in.) between Named Points. Small bend radii (<152 mm or 6 in.) that terminate at Named Points are expected, and are not considered to make a member bent, regardless of angle. A bend that terminates at a Named Point implies the point lies between the tangents of the bend, as shown in Figure B-2. Required dimensions between roll cage members are defined by measurements between member centerlines, except where noted.

Figure B-2: Roll Cage, Bend and Member Termination

B.3.2.2 - Primary Members

The roll cage must be a space frame of tubular steel. The required members of the roll cage are illustrated in Figure B-3 and Figure B-4. Primary members must conform to B.3.2.16 - Roll Cage Materials.

Primary members are:

- RRH: Rear Roll Hoop
- RHO: Roll Hoop Overhead Members
- FBM: Front Bracing Members
- ALC: Aft Lateral Cross Member
- BLC: Overhead Lateral Cross Member
- CLC: Upper Lateral Cross Member
- DLC: SIM Lateral Cross Member
- FLC: Front Lateral Cross Member
- LFS: Lower Frame Side Members
Secondary members are:

- **LDB**: Lateral Diagonal Bracing
- **SIM**: Side Impact Members
- **FAB**: Fore/Aft Bracing Members
- **USM**: Under Seat Member
- **RLC**: Rear Lateral Cross Member
- Any tube that is used to mount the safety belts or fuel tank

Secondary members must be steel tubes having a minimum wall thickness of 0.89 mm (0.035 in) and a minimum outside diameter of 25.4 mm (1.0 in):
B.3.2.4 - Additional Support Members

For bent or straight Roll Cage Members that exceed the maximum allowable length, additional support members may be added. For straight members, a single secondary member should connect from the mid-point (± 127 mm or 5 in.) to a Named Point. For bent members, a single secondary member should connect from between the tangents of the bend to a Named Point. At no time may a bent member have a bend greater than 30°.

Named Roll Cage Points: A, B, C, D, F, S, (E and/or G for ‘Nose’ cars) and P, Q, and R as applicable for FAB systems. All named points are implied to have a Left and Right hand side, denoted by subscript L or R (e.g. AL and AR) as shown in Figure B-5 and Figure B-6.

Figure B-5: Roll Cage, Named Roll Cage Points, Rear Braced Frame.
Figure B-6: Roll Cage, Named Roll Cage Points, Front Braced Frame
B.3.2.5 - LC – Lateral Cross Member

Lateral cross members cannot be less than 203.5 mm (8 in.) long. LC’s cannot have a bend; however, they can be a part of a larger, bent tube system, provided the minimum length is met between bend tangents. The cross members which connect the left and right points A, B, C, D, F and E/G for ‘Nose’ cars (in which case DLC may be omitted) and must be made of primary materials and shall meet minimum required lengths. LC’s are denoted by the points they connect (e.g. ALC, FLC, etc.). The LC at Point R for Rear FAB systems may be secondary material and must meet the minimum length described above.

Figure B-7: Roll Cage, LC
B.3.2.6 - RRH – Roll Hoop

The RRH is a planar structure behind the driver's back, and defines the boundary between the front-half (fore) and rear-half (aft) of the roll cage. The driver and seat must be entirely forward of this panel. The RRH is substantially vertical, but may incline by up to 20 deg. from vertical. The minimum width of the RRH, measured at a point 686 mm (27 in.) above the inside seat bottom, is 736 mm (29 in.). The vertical members of the RRH may be straight or bent, and are defined as beginning and ending where they intersect the top and bottom horizontal planes (points AR and AL, and BR and BL in Figure B-8). The vertical members must be continuous tubes (i.e. not multiple segments joined by welding). The vertical members must be joined by ALC and BLC members at the bottom and top. ALC and BLC members must be continuous tubes or adhere to B.3.2.14 - Butt Joints. ALC, BLC, RRH members, LDB and the shoulder belt tube must all be coplanar.

Figure B-8: Roll Cage, RRH
B.3.2.7 - LDB – Lateral Diagonal Bracing

The RRH must be diagonally braced. The diagonal brace(s) must extend from one RRH vertical member to the other. The top and bottom intersections of the LDB members and the RRH vertical members must be no more than 127 mm (5 in.) from points A and B. The angle between the LDB members and the RRH vertical members must be greater than or equal to 20 deg. Lateral bracing may consist of more than one member.

A single straight LDB is exempt from the maximum length in B.3.2.1 - Member Requirements.

Figure B-9: Roll Cage, LDB
B.3.2.8 - RHO – Roll Hoop Overhead Members

The aft (rearward) ends of the RHO members intersect the RRH and define Points BR and BL (joined by BLC). The forward ends of the RHO members (intersection with the CLC) define points CR and CL (Figure B-7). CLC, BLC and RHO members must all be coplanar and bends at the aft (rearward) ends of the RHO members are not permitted.

Points CR and CL must be between at least 305 mm (12 in.) forward of a point, in the vehicle’s side view, defined by the intersection of the RHO members and a vertical line rising from the aft end of the seat bottom. This point on the seat is defined by the seat bottom intersection with a 101 mm (4 in.) radius circle which touches the seat bottom and the seat back. The top edge of the template is exactly horizontal with respect to gravity.

Points CR and CL and Points BR and BL must also be no lower than the top edge of the template, 1041.4 mm (41 in) above the seat and shall satisfy the Lateral Space requirements in Rule B.3.3.1 - Lateral Space.

Note: The top, longitudinal edge of the template shall be oriented exactly horizontal with respect to gravity.
Figure B-11: Roll Cage, Template Installation

Figure B-12: Roll Cage Template Drawing
B.3.2.8.1 - Gussets for RHO and RRH
If a gusset is used to brace the RHO and RRH to achieve the Lateral Clearance in Rule B.3.3.1 - Lateral Space the added tubes must be a primary member (B.3.2.16 - Roll Cage Materials); completely welded around the circumference of both ends of the gusset tube.

Figure B-13: Roll Cage, Gussets
B.3.2.9 - LFS – Lower Frame Side Members

The two Lower Frame Side members define the lower right and left edges of the roll cage. These members are joined to the bottom of the RRH at Point A and extend generally forward, at least as far as a point forward of every driver’s heels, when seated in normal driving position. The forward ends of the LFS members are joined by a lateral cross member, FLC (Figure B-7). The intersection of the LFS members and the FLC define the points FR and FL. In 'Nose' designs, as shown in Figure B-14, the LFS extends forward to Point E, and is joined by a lateral cross member FLC and ELC (Figure B-7).

Figure B-14: Roll Cage, LFS
B.3.2.10 - SIM – Side Impact Members

The two Side Impact Members (SIM) define a horizontal mid-plane within the roll cage. These members are joined to the RRH, defining Point S, and extend generally forward, at least as far as a point forward of every driver’s toes, when seated in normal driving position. The forward ends of the SIM members are joined by a lateral cross member, DLC. The intersection of the SIM and DLC define the points DR and DL. The SIM members must be between 203 mm (8 in.) and 356 mm (14 in.) above the inside seat bottom (Figure B-11) at all positions between points S and D. In ‘Nose’ designs, as shown in Figure B-15, the SIM extends forward to Point G, and is joined by a lateral cross member GLC (Figure B-7). In this case, DLC may be omitted if GLC provides adequate protection for the driver’s toes as noted below.

![Roll Cage, SIM](image)

Figure B-15: Roll Cage, SIM

Note: Every driver’s feet must be entirely behind the plane defined by points FR, L and DR, L. If DLC is below the driver’s toes, then an additional primary material Lateral Cross Member must run between the FBM members above the driver’s toes. In ‘Nose’ designs, if GLC is below the driver’s toes then an additional primary material Lateral Cross Member must be run between FBM members above the driver’s toes.
B.3.2.11 - USM – Under Seat Member

The USM must be positioned in such a way to prevent the driver from passing through the plane of the LFS in the event of seat failure. **Two options are given for the USM member:**

1) The two LFS members must be joined by the Under Seat Members. The USM must pass directly below the driver where the template in Figure B-11 intersects the seat bottom.

2) The ALC and FLC members must be joined longitudinally by the Under Seat Member. The USM must and pass directly below the driver where the template in Figure B-11 intersects the seat bottom.

![Figure B-16: Roll Cage, USM](image)
B.3.2.12 - FBM – Front Bracing Members
Front Bracing Members must join the RHO, the SIM and the LFS (Figure B-17) at Points C, D and F. The upper Front Bracing Members (FBM_up) must join points C on the RHO to point D on the SIM. The lower Front Bracing Members (FBM_low) must join point D to point F. The FBM must be continuous tubes. The angle between the FBM_UP and the vertical must be less than or equal to 45 deg. If Front FAB, per Rule B.3.2.13.1 - Front Bracing, is used there is no angle requirement between FBM and vertical.

Figure B-17: Roll Cage, FBM

B.3.2.12.1 - Gussets for RHO and FBM
If the RHO and FBM on one side of the vehicle are not comprised jointly of one tube, bent at point C, then a gusset is required at point C to support the joint between the RHO and the FBM. The total weld length of the gusset must be two times the tubing circumference (of the primary material). Thus, if a tube is used to brace the FBM and RHO, it must be a primary tube.

B.3.2.13 - FAB – Fore - Aft Bracing
The RRH must be restrained from rotation and bending in the side view by a system of triangulated bracing. Bracing must either be front bracing or rear bracing:

- Rear Bracing - directly restrain both points B from longitudinal displacement in the event of failure of the joints at points C; or
- Front Bracing - restrain both points C from longitudinal and vertical displacement, thus supporting points B through the RHO members. A better design will result if both front and rear bracing are incorporated.
Members used in the FAB systems must not exceed 1016 mm (40 in.) in unsupported length. Triangulation angles (projected to the side view) must be at least 20 deg. between members.

B.3.2.13.1 - Front Bracing

Front systems of FAB must connect the FBM$_{UP}$ members to the SIM members (on the same sides). The intersection with the FBM$_{UP}$ members must be within 127 mm (5 in.) measured as a straight line distance from centerline to centerline of point C. The intersection with the SIM members (defined at Point P) must be vertically supported by further members connecting the SIM members to the LFS members (defined at Point Q).

B.3.2.13.2 - Rear Bracing

Rear systems of FAB must create a structural triangle, in the side view, on each side of the vehicle. Each triangle must be aft of the RRH, include the RRH vertical side as a member, and have one vertex at Point B and one vertex at either Point S or Point A. The tubes forming this structural triangle must be continuous members; but bends of less than 30 deg. are allowable. The third (aft) vertex of each rear bracing triangle, Point R (Figure B-18), must additionally be structurally connected to whichever Point, S or A, is not part of the structural triangle. This additional connection is considered part of the FAB system, and is subject to B.3.2.1 - Member Requirements, but may be formed using multiple joined members, and this assembly of tubes, from endpoint to endpoint, may encompass a bend of greater than 30 deg.

Attachment of rear system FAB must be within 127 mm (5 in.) of Point B, and must be within 51 mm (2 in.) of points S and A, on each side of the vehicle. Distances are measured as a straight line distance from centerline to centerline. The aft vertices, at Point R, of the FAB structural triangles must be joined by an LC.
B.3.2.14 - Butt Joints

B.3.2.14.1 - Requirement
Roll cage element members which are made of multiple tubes, joined by welding, must be reinforced with a welding sleeve. Many roll cage elements are required to be continuous tubes, and may not be made of multiple pieces. Tubes which are joined at an angle need not be sleeved.

B.3.2.14.2 - Size
Sleeves must be designed to fit tightly on the inside on the joint being reinforced. External sleeves are not allowed. Sleeves must extend into each side of the sleeved joint, a length of at least two times the diameter of the tubes being reinforced, and be made from steel at least as thick as the tubes being reinforced.

Figure B-19: Roll Cage, Butt Joint Tube Sleeve

B.3.2.14.3 - Welding
The general arrangement of an acceptable sleeved joint is shown in Figure B-19. A butt weld and four (4) rosette welds are required. Two (2) rosette welds are required each tube piece. Rosette welds are to be made in holes of a minimum diameter of 16 mm (0.625 in.).

A minimum of 102 mm (4.0 in.) of linear weld is required to secure the sleeve inside the joint, including the butt joint and the rosette welds.

B.3.2.15 - Welding Process Check
Each person who makes any welded joint on any of the vehicle’s roll cage elements must personally make two welding samples (defined below), using the same materials and processes as used in the roll cage element welds. All welding samples must be submitted at Technical Inspection. Vehicles for which
complete sets of welding samples are not submitted, or for which any of the welding samples are judged inadequate, will not be allowed to compete in dynamic or endurance events.

Welding samples must be made from the same tube material, diameter, and thickness as the welds made by each person on the roll cage elements. For information on best practices for weld samples, see www.bajasae.net/go/downloads.

All weld samples shall be labeled by permanent means such as engraving, etching, or stamping with all of the following information:

- School Name or School Initials
- Welder Name or Welder Initials
- Date of construction of weld sample

Sample 1 – Destructive Testing:

A 90-degree joint, the leg length is unrestricted (Figure B-20). This joint must be destructively tested causing the joint to fail in the base material (as opposed to the weld metal). The testing method is free—either tensile or bending failure may be induced; however, the peak stress must be located at the weld. In the case of bending failure, take care that the largest bending moment is located at the weld.

![Figure B-20: Roll Cage, Welding Sample 1](image)

Sample 2 – Destructive Inspection

Two tubes joined at a 30 degree angle with a length of at least 150 mm (5.9 in.) from the center of the joint (Figure B-21). The sample must be sectioned along the length of tube to reveal adequate and uniform weld penetration (Figure B-21).
B.3.2.16 - Roll Cage Materials

The material used for the Primary Roll Cage Members and bracing must meet one of the following requirements:

- Circular steel tubing with an outside diameter of 25 mm (1.0 in) and a wall thickness of 3 mm (0.120 in.) and a carbon content of at least 0.18%.
- A steel shape with bending stiffness and bending strength exceeding that of circular steel tubing with an outside diameter of 25 mm (1.0 in.) and a wall thickness of 3 mm (0.120 in.). The wall thickness must be at least 1.57 mm (0.062 in.) and the carbon content must be at least 0.18%, regardless of material or section size. The bending stiffness and bending strength must be calculated about a neutral axis that gives the minimum values.

Bending stiffness, k_b, is given by:

$$k_b = EI$$

Where:

- E - Modulus of elasticity (205 GPa for all steels)
- I - Second moment of area for the structural cross section

Bending strength, S_b, is given by:

$$S_b = \frac{S_y I}{c}$$

Where:
Sy - Yield strength (365 MPa for 1018 steel)
c - Distance from neutral axis to extreme fiber

Documentation of the equivalency must include:

1) Typed calculations to be presented at Technical Inspection which proves sufficient bending stiffness and bending strength. All calculations must be in SI units, to three significant figures to the nominal tube sizes as specified by the invoice. Teams shall show figures for 1018 steel and the substitute material.
2) Invoices of the roll cage materials.
3) Material tests or certifications, which specify the carbon content and yield strength.

B.3.2.17 - Roll Cage Specification Sheet
Each vehicle must present a completed and signed Baja SAE® Roll Cage Specification Sheet at Technical Inspection. Newly completed copies must be presented for each competition.

B.3.3 - Driver Clearance

B.3.3.1 - Lateral Space
Minimum space is based on clearances between the driver and a straight edge applied to any two points on the outside edge of the roll cage structure. The driver’s helmet shall have 152 mm (6 in.) clearance, while the driver’s shoulders, torso, hips, thighs, knees, arms, elbows, and hands shall have 76 mm (3 in.) clearance. Clearances are relative to any and all drivers selected at technical inspection, seated in a normal driving position, and wearing all required equipment.

For any member to be a part of the roll cage, that member must be listed in B.3.2.2 - Primary Members, otherwise it is assumed to have no contribution (Suspension components, additional gussets, and cross members are examples of members which do not conform to B.3.2.2). If there are any triangulating members joining the RHO to the vertical members of the Rear Roll Hoop, and these triangulating members conform to B.3.2.16 - Roll Cage Materials, then the virtual side surfaces may be extended by an outboard crease over the triangulating members.

B.3.3.2 - Vertical Space
The driver’s helmet shall have 152 mm (6 in.) minimum clearance from any two points among those members that make up to top of the roll cage. These members are: the RHO members (exclusive of any covering or padding); the RRH upper, LC; and the LC between points C (left and right). In an elevation (side) view, no part of the driver’s body, shoes, and clothing may extend beyond the envelope of the roll cage.

B.3.4 - Sharp Edges
The entire vehicle, including the roll cage shall have no exposed sharp edges which might endanger the driver, track workers, or people working around the vehicle while the vehicle is in any attitude (static, dynamic, inverted, etc.).

B.3.5 - Bolted Roll Cages
Bolted Roll cages joints are acceptable only if the following requirements are met (Figure B-22):
1) Flanges or tabs must be twice (2x) the thickness of the frame tube, and made of the same material. They must be properly welded to each tubing part to be joined. The face of the flange must be perpendicular to the axis of the frame tube.

2) The radius of the flange must be at least 25 mm (1.0 in.) larger than the outer radius of the frame tube.

3) The gap between faces of the flanges (before being tightened) must be no greater than 0.07 mm (0.003 in).

4) The flanges must be attached with at least 3 bolts with a minimum diameter of 8 mm (0.313 in.), equally spaced on the flanges. The minimum edge distance between the bolt holes and the edge of the flanges must be twice the bolt diameter.

5) Pin Joints are not permitted

Figure B-22: Roll Cage, Required Joint for Removable Members
B.3.6 - Drilled Frame Members

B.3.6.1.1 - Sleeved Joints
Frame members which need to be drilled for the purpose of mounting fasteners or routing accessories must be reinforced with a weld-in sleeve. Sleeves must be designed to fit tightly on the inside of the hole or joint being reinforced. Sleeves must extend beyond the tube on both sides and be fully welded to the tube. An unacceptable joint is denoted by a red “X”. An acceptable joint is denoted by a green “O” in Figure B-23.

![Sleeved Joint Diagram]

Figure B-23: Roll Cage, Required tube sleeve for drilled holes

B.3.7 - Frame Documentation Package

B.3.7.1 - Required Documents
Required documents for the Frame Documentation Package include: Roll Cage Specification Sheet & frame material documentation (invoices, certifications, calculations, etc.). Frame diagram/drawings are not required.

B.3.7.2 - Document Submittal
1) Download the form and template from bajasae.net download section (Note: All files that are uploaded must be in a PDF format)
2) Upload the Frame Documentation Package (max size 5 MB)
 a. Roll Cage Specification Sheet
 b. Frame Material Documentation
 c. Invoice of roll cage material
 d. Material Test of Certification
 e. Any Required Calculation per rule B.3.2.16 - Roll Cage Materials
 f. A diagram highlighting what parts of the frame were outsourced or professionally fabricated

B.3.7.3 - Process
Documents will be reviewed by the National Technical Inspectors on a first come first serve basis. Typical review period will be 30 days after submittal. After review, feedback will be given to teams. If the submission is rejected by the National Technical Inspectors, the team must correct the error noted in the rejection and continue to resubmit the Frame Documentation Package, until they are marked Accepted. It is the responsibility of teams to submit complete documents by the appropriate deadlines. If teams have additional questions, they will need to use other resources to find the answers or wait until competition.
Note: If a team's initial Frame Check Document is received more than five (5) days late it will be classified as “Not Submitted” and your team will be removed (withdrawn) from the event. Documents do not need to receive a Pass Judgement in order to satisfy this requirement.

Article 4 - Driver Restraint

B.4.1 - Function
The driver restraint system shall function to safely and securely hold the driver within the envelope of the vehicle’s roll cage. The driver restraint system shall also quickly and completely disengage when required to allow the driver a minimum egress time. The driver restraint system consists of a safety harness, arm restraints, and the vehicle’s seat. The driver restraint system shall be fully functional and properly worn whenever the driver is seated in the vehicle.

B.4.2 - Driver Harness
The driver harness shall consist of a 5-point (or more) system comprised of two shoulder belts (left and right), two lap belts (left and right), and one or more anti-submarine belts all joining at a single, central buckle (disconnect point). The anti-submarine belt serves to positively locate the buckle and prevent the driver from riding under the lap belts.

![Driver Harness Schematic](image)

Figure B-24: Driver Harness Schematic

B.4.2.1 - Certification
All driver restraint systems shall meet either SFI Specification 16.5/16.1, or FIA specification 8853/98. The material of shoulder and lap belts shall be of Nylon or Dacron polyester and in new or like-new condition, 76 mm (3.0 in.) in width, and free from injurious defects. Anti-submarine belts shall meet the same conditions, but have a minimum width of 51 mm (2.0 in.).
B.4.2.2 - Expiration
In December of 2016, SFI updated the design and format of driver harness expiration tags. Manufacturers are permitted to use old tags until their supply runs out. Baja SAE® permits the use of driver harnesses with the old and the new tag design, provided:

For old style tags: On January 1st of the competition year, harnesses shall be no more than three (3) years old.

For new style tags: Harnesses with expiration tags bearing a “Valid Until” date that is on or after the last day of the current competition.

![Old Style SFI Tag](image1.png) ![New Style SFI Tag](image2.png)

Figure B-25: Driver Harness, SFI Tag, Old Style (Left), New Style (Right)

B.4.2.3 - Release Mechanism
All belts in the driver harness must join to a single, central, metal-to-metal, lever-type, quick-release buckle. Cam-Lock, and other enclosed buckles susceptible to jamming from small debris (such as sand particles) are explicitly prohibited. The release mechanism (buckle) shall be protected against accidental unfastening from a direct pull, rollover or slide along the side.

B.4.2.4 - Shoulder Belts
The shoulder harness shall be of the over-the-shoulder type. Only separate shoulder straps are permitted. “Y”-type shoulder straps are explicitly prohibited.

B.4.2.4.1 - Positioning, Vertical
The shoulder belt mounting point (A) (see Figure B-26) shall be positioned no higher than vertically level with each driver’s shoulders, and no lower than 102 mm (4.0 in.) vertically below each driver’s shoulders.
B.4.2.4.2 - Positioning, Lateral

The lateral spacing of the shoulder belts shall be between 178 mm (7.0 in.) and 229 mm (9.0 in.) when measured center-to-center. See Figure B-27.

Lateral position of the shoulder belts along their mounting tube must be restrained by a structure other than the firewall.

Figure B-26: Driver Harness, Shoulder Harness Vertical Position

Figure B-27: Driver Harness, Shoulder Harness Lateral Position
B.4.2.4.3 - Attachment

The shoulder belts shall be looped and secured around a straight, horizontal tube welded within the plane of the RRH. The tube that the shoulder belts are looped around shall meet the requirements of a secondary member, B.3.2.3 - Secondary Members. Provisions for lateral position restraint shall be provided. Firewall material is not acceptable for lateral position restraint. See Figure B-28 for details.

![Figure B-28: Driver Harness, Shoulder Harness Lateral Restraint](image)

B.4.2.4.4 - Redirection

The shoulder belts must run directly from their mountings to the driver's shoulders, without redirection by any part of the vehicle or its equipment, including seats.

Webbing shall not be twisted or rotated at any point along the path of the shoulder belt.

![Figure B-29: Driver Harness, Diagram of Proper Wrapping of Webbing](image)
B.4.2.4.5 - Adjustment
The shoulder belts shall be in proper adjustment for the driver at all times. When the driver harness is worn, each buckle or adjuster in the system shall have excess adjustment capacity to fit all drivers.

B.4.2.4.6 - Protection
The shoulder belts shall be protected from potential damage from aft of the RRH. The firewall must protect the shoulder belts. The firewall may be pocketed or extended to facilitate this requirement, as long as no open gaps result. Excess shoulder belt webbing shall be neatly contained and kept within the roll envelope of the vehicle.

B.4.2.5 - Lap Belts
The lap belt halves must run directly from the buckle, over the driver's hips and to their mounting points without redirection by any part of the vehicle or its equipment (including the seat). The lap belt halves must be mounted to frame tabs using the bracket supplied with the safety harness. Lap belts may not be mounted by wrapping around tubes.

B.4.2.5.1 - Positioning
The lap belt (point B to point C) in Figure B-30 shall be positioned such that it passes over the driver's pelvic area below the Anterior Superior Iliac Spines (the hip bones). The lap belt shall not be worn over the driver's intestines or abdomen.

In a side view, the lap belt must be at a minor angle (angle “L” or angle BCD) of between 45 deg and 65 deg to the horizontal. This requirement means that the centerline of the lap belt at the seat bottom will be approximately 76 mm (3.0 in.) forward of the bottom of the seat back.

Note: Quick disconnect fasteners for body panels are recommended, and facilitate a faster technical inspection process.
B.4.2.5.2 - Attachment
The lap belts shall be securely attached to the vehicle frame with metal tabs joined by a threaded fastener. Lap belts wrapped around tubes or secured with eye-bolts are explicitly prohibited. Webbing shall be wrapped per Figure B-29: Driver Harness, Diagram of Proper Wrapping of Webbing.

Threaded fasteners in the driver restraint system shall meet the requirements of Article 12 - Fasteners.

Threaded fasteners in the driver restraint system shall match the nominal diameter of the mounting holes in the lap belt mounting bracket. For example, if a lap belt mounting tab is drilled for a 13 mm (0.5 in.) hole, the fastener and the frame lap belt tab shall be 13 mm (0.5 in.) in diameter.

The frame tabs which accept the metal lap belt tabs shall meet the following requirements:

a. The frame lap belt tabs shall be no less than 2.3 mm (0.090 in.) thick and configured for double-shear mounting. Frame lap belt tabs configured in bending are explicitly prohibited. See Figure B-31.

b. The frame lap belt tabs shall be attached to the frame with no less than 38 mm (1.5 in.) of weld length per tab.

c. The frame lap belt tabs shall have no less than 6.4 mm (0.25 in.) of edge distance. (edge distance is the measurement from the edge of the bolt hole to the outside edge of the tab.)

d. The frame lap belt tabs and lap belt shall be installed such that the lap belt tabs pivot freely.

e. The frame lap belt tabs and their mounting shall be stiff and not readily deformed.

f. No lightening holes or other cutouts are permitted on the frame lap belt tabs

![Figure B-31: Driver Harness, Lap Belt Tab Orientation](image)

B.4.2.5.3 - Redirection
The lap belts shall be routed directly from the mounting points over the driver’s hips and to the release mechanism (buckle) without redirection by any part of the vehicle or its equipment (including the seat).

Webbing shall not be twisted or rotated at any point along the path of the lap belt.

B.4.2.5.4 - Adjustment
The lap belts shall be in proper adjustment for the driver at all times. When the driver harness is worn, each buckle or adjuster in the system shall have excess adjustment capacity.
B.4.2.5.5 - Protection
The lap belts shall be protected from potential damage by the vehicle's body panels. Excess lap belt webbing shall be neatly contained and kept within the roll envelope of the vehicle.

B.4.2.6 - Anti-Submarine Belts

B.4.2.6.1 - Number of Points
The anti-submarine belt (Line BD in Figure B-32) shall be at least a single-point mount (a 5-point driver harness configuration). Driver harnesses of the 6-point and 7-point types are permitted. A 6-point system utilizes two anti-submarine belt mounting points. A 7-point system utilizes three anti-submarine belt mounting points.

B.4.2.6.2 - Positioning
Anti-submarine belts shall be mounted to the vehicle frame at a point aft of the chest line as denoted by a positive angle “S” in Figure B-32. The anti-submarine belt mounting point shall be forward of the lap belt mounting points. The chest line passes through point B and is parallel to the driver’s sternum. The anti-submarine belt angle (angle S) is suggested to be 20 deg. The anti-submarine belt shall be mounted either to a frame tab or wrapped around a frame member meeting at least secondary member requirements.

6-point and 7-point harnesses shall be installed per the manufacturer’s instructions. Teams shall be prepared to provide documentation of mounting instructions to NTI at the time of technical inspection.

Note: Quick disconnect fasteners for body panels are recommended, and facilitate a faster technical inspection process.

Figure B-32: Driver Harness, Anti-Submarine Belt Angle
B.4.2.6.3 - Attachment
The anti-submarine belts shall be securely attached to the vehicle frame with metal tabs joined by a threaded fastener. Anti-submarine belts may also be wrapped around tubes provided the tubing meets the requirements of secondary members (B.3.2.3 - Secondary Members) and the webbing is protected per B.4.2.6.6 - Protection. Anti-submarine belts secured with eye-bolts are explicitly prohibited. Webbing shall be wrapped per Figure B-29: Driver Harness, Diagram of Proper Wrapping of Webbing.

Threaded fasteners in the driver restraint system shall meet the requirements of Article 12 - Fasteners.

Threaded fasteners in the driver restraint system shall match the nominal diameter of the mounting holes in the lap belt mounting bracket. For example, if an anti-submarine belt mounting tab is drilled for a 13 mm (0.5 in.) hole, the fastener and the frame tabs tab shall be 13 mm (0.5 in.) in diameter.

The frame tabs which accept the metal anti-submarine belt tabs shall meet the following requirements:

a. The frame anti-submarine belt tabs shall be no less than 2.3 mm (0.090 in.) thick and configured for double-shear mounting. Frame anti-submarine belt tabs configured in bending are explicitly prohibited.
b. The frame anti-submarine belt tabs shall be attached to the frame with no less than 38 mm (1.5 in.) of weld length per tab.
c. The frame anti-submarine belt tabs shall have no less than 6.4 mm (0.25 in.) of edge distance. (edge distance is the measurement from the edge of the bolt hole to the outside edge of the tab).
d. The frame anti-submarine belt tabs and lap belt shall be installed such that the lap belt tabs pivot freely.
e. The frame anti-submarine belt tabs and their mounting shall be stiff and not readily deformed.
f. No lightening holes or other cutouts are permitted on the frame anti-submarine belt tabs.

If the anti-submarine belt is wrapped around a frame member, the following requirements shall be met:

a. The anti-submarine belt mounting tube shall have features designed to limit lateral movement to 25.4 mm (1.0 in.) or less.
b. The anti-submarine belt mounting tube shall meet the frame requirements of an LC. The mounting tube may not be cantilevered off of another tube creating an undue bending moment.

B.4.2.6.4 - Redirection
Redirection of the anti-submarine belt by a rigid frame, seat member, or seat edge is allowed. Redirected belt webbing must not contain a bend of more than 30 deg (Figure B-33). The redirecting member or edge must be designed to prevent chaffing or abrasion of the belt webbing.

Webbing shall not be twisted at any point along the path of the anti-submarine belt.
The anti-submarine belts shall be in proper adjustment for the driver at all times. When the driver harness is worn, each buckle or adjuster in the system shall have excess adjustment capacity.

All anti-submarine belts shall be protected by the vehicle skid plate. Excess anti-submarine belt webbing shall be neatly contained and kept within the roll envelope of the vehicle.

In the event of a rollover, the driver’s arms must be kept within the limits of the roll cage space (B.3.3.1 - Lateral Space) by use of arm restraints. Arm restraints must be securely fastened to the driver restraint system. Only commercially available arm restraints meeting SFI 3.3 are allowed. The arm restraints must independently connect to the safety belts.

The restraints must be in overall good condition and show no signs of wear, no cuts chaffing or wear. The restraints must bear the appropriate labels.
Figure B-34: Driver Harness, Arm Restraints

Note: Manufacturers are required to ensure they have labeled the belts with a date of manufacture. The date tag may be separate from the SFI tag.

B.4.3.2 - Expiration

In December of 2016, SFI updated the design and format of driver harness expiration tags. Manufacturers are permitted to use old tags until their supply runs out. Baja SAE® permits the use of arm restraints with the old and the new tag design, provided:

For old style tags: On January 1st of the competition year, harnesses shall be no more than three (3) years old.

For new style tags: Harnesses with expiration tags bearing a “Valid Until” date that is on or after the last day of the current competition.

See Figure B-25 for more information.

B.4.3.3 - Positioning

Arm restraints must be installed such that the driver can release the harness and exit the vehicle unassisted, regardless of the vehicle’s position. The arm restraint must be worn by the driver on the forearm just below the elbow. The driver must be able to reach the cockpit kill switch and steering wheel, but not allow their arms to exit the cockpit.

B.4.3.4 - Attachment

Arm restraints shall be attached to the buckle of the driver harness when assembled.

B.4.4 - Head Restraint

A head restraint must be provided to limit rearward motion of the driver’s head from a normal driving position. The head restraint must be mechanically fastened to the vehicle, preferably to the vehicle frame. Hook-and-loop and adhesive methods are prohibited. Head restraints may also be mechanically fastened or integral to the driver’s seat.

Caution: HANS devices and Leatt braces are not allowed due to the improper fitment of these devices with respect to nominal Baja SAE® seat design and seating position.
B.4.5 - Seats
The seat shall work in concert with the driver harness to secure the driver within the envelope of the roll cage. Seats shall be of conventional design. See details below. All seats shall be designed for the upright seating position. Suspension seats are prohibited. The upright seating position is defined by the angle of the driver's back to a horizontal line. The seat back angle (Figure B-35) for an upright seating position is greater than 65 deg. As a reference, a completely upright driver will have a back angle of 90 deg.

Figure B-35: Seat Angle

B.4.5.1 - Seat Construction

B.4.5.1.1 - Conventional Seats
Conventional seats shall be generally rigid and be of metal or composite construction (fiberglass or carbon fiber). Seats constructed of thermoplastic are prohibited. Conventional seats may also have a removable seat cover and foam padding. Seats may be purchased from a manufacturer or constructed by teams.

B.4.5.1.2 - Suspension Seats
Suspension seats, sling seats, hammock seats, or similar designs with webbing or cordage as the primary load path are explicitly prohibited.

B.4.5.2 - Seat Design
Seats shall be designed to have at least two generally planar surfaces when the driver is seated in the vehicle. The seat back plane shall be inclined between 65 and 90 deg from horizontal as viewed from the side (see Figure B-35: Seat Angle). The seat bottom plane shall be underneath the driver and be horizontal or generally sloped such that the leading edge of the seat bottom plane is level with or higher than the intersection with the back plane. Seats may also include material oriented vertically along the
sides of the seat bottom plane and the seat back plane designed to assist in laterally restraining the driver.

B.4.5.3 - Seat Mounting Points (Conventional Seats)

B.4.5.3.1 - Quantity
All seats shall have no less than six (6) total mounting points to the vehicle frame. Seats shall have no less than four (4) mounting points from the seat bottom plane and no less than two (2) mounting points from the seat back plane.

B.4.5.3.2 - Arrangement
The seat bottom plane and seat back plane mounting points shall be generally symmetrical about the longitudinal center line of the seat itself or the vehicle. Seat back plane mounting points shall be at or near the plane of the RRH. All seat mounting points shall attach to the LFS, USM, RRH or other tubes having met the requirements of secondary frame members. Each seat bottom mount shall be designed to evenly distribute vertical load.

B.4.5.3.3 - Structure
Any tabs utilized in mounting the seat shall be a minimum thickness of 2.3 mm (0.090 in) and have at least 38 mm (1.5 in.) of weld length per tab.

Mounting Tabs shall not visibly deform when a load is applied. The average distance from the tab hole to the main tab weld line shall not exceed 25.4 mm (1.0 in.). Any tube used to mount the seat with radial holes drilled in the tube shall be sleeved and reinforced per rule B.3.6 - Drilled Frame Members.

Article 5 - Driver Equipment

B.5.1 - Helmet
All drivers must wear a properly sized motocross-style helmet with an integrated (one-piece composite shell) chin/face guard.

All helmets used in Baja SAE® shall be certified by the Snell Memorial Foundation. All Snell certified helmets used in Baja SAE® shall meet the most current Snell “M” (Motorcycle) rating, or the immediately preceding rating.

For example, at the time of writing, the M2015 rating was the most current and the M2010 rating the preceding rating. All M2015 helmets and all M2010 helmets would be acceptable for use in Baja SAE®. Any helmets not meeting these standards are explicitly prohibited.

![Figure B-36: Driver Equipment, Snell M2010 Sticker](image)

![Figure B-37: Driver Equipment, Snell M2015 Sticker](image)
Note: Some Motocross helmets have extended chin guards that will not contact the required neck collars when the head is flexed forward. This combination of helmet/collar system is prohibited.

Note: Any non-specification helmets will be confiscated by the NTI for the duration of the event. At the close of the endurance race, all confiscated items will be available for pick up.

Caution: Do not rely on salespeople to determine if a helmet is Snell rated. Check for the Snell sticker under the foam liner of the helmet.

B.5.2 - Eye Protection

B.5.2.1 - Type
All drivers shall wear motocross-style goggles with a full-circumference elastic band that wraps completely around the driver’s helmet. “Quick Straps” or other quick-release systems are explicitly prohibited.

B.5.2.2 - Lens Protection
All goggles used by drivers must have tear-off or roll off lens protectors. These tear-offs or roll-offs are used to ensure the driver has unobstructed vision through their goggles. Teams must present their goggles and properly installed tear offs or roll-offs at tech inspection. Teams without tear offs or properly functioning roll offs are subject to being black flagged.

B.5.3 - Neck Support

B.5.3.1 - Certification
All drivers must wear a neck support / neck collar. The neck support must be a full circumference (360 deg.) and SFI 3.3 rated. Horseshoe collars are not allowed. Simpson, RCI, GForce, Deist or Leaf Racing Products supply neck collars that meet this requirement.

The support/collar must be in overall good condition and show no signs of wear or other injurious defects. The support/collar must bear the appropriate dated labels, and on Jan 1st of the competition year be no more than three years old.

Figure B-38: Driver Equipment, Neck Restraint
B.5.3.2 - Expiration

In December of 2016, SFI updated the design and format of neck support/collar expiration tags. Manufacturers are permitted to use old tags until their supply runs out. Baja SAE® permits the use of arm restraints with the old and the new tag design, provided:

For old style tags: On January 1st of the competition year, harnesses shall be no more than three (3) years old.

For new style tags: Support/collar with expiration tags bearing a “Valid Until” date that is on or after the last day of the current competition.

See Figure B-25 for more information.

Note: Manufacturers are required to ensure they have labeled the support/collar with a date of manufacturing. The date tag may be separate from the SFI tag.

B.5.4 - Clothing

B.5.4.1 - Gloves
Drivers shall wear gloves to protect their hands. Durable, abrasion resistant gloves are required.

B.5.4.2 - Shoes
Drivers shall wear socks and shoes.

B.5.4.3 - Upper Garments
Drivers shall wear a fire resistant shirt. The shirt must have a factory label showing an SFI rating, FIA rating, NFPA 2112 rating, or other fire resistant rating.

B.5.4.4 - Lower Garments
Drivers shall wear long pants made of natural materials such as cotton, denim, etc. Drivers may also wear fire resistant pants having an SFI, FIA, NFPA 2112, or other fire resistant rating.

B.5.4.5 - Combustible Material
Jerseys, gloves, socks or other garments made from nylon or any other synthetic material which will melt or combust when exposed to open flame or extreme heat, are explicitly prohibited from use during competition.

Article 6 - Fuel System

B.6.1 - Function
All vehicles shall have a fuel system comprising of a fuel tank, fuel hose and fittings, and splash shields. The fuel system shall function to safely contain and control fuel and to safely convey fuel to the engine carburetor. The entire engine is considered to be part of the fuel system.

B.6.2 - Fuel
The only fuels permitted for Baja SAE® competitions are grades of automotive gasoline consisting of hydrocarbon compounds. The fuel may contain anti-oxidants, metal deactivators or corrosion inhibitors.

Caution: Lead alkyl compounds such as tetra-ethyl lead are explicitly prohibited.
B.6.2.1 - Specific Gravity
The specific gravity of the fuel may not exceed 0.75 for leaded gasoline or 0.80 for unleaded gasoline when measured at 15.5 deg. C (60 deg. F).

B.6.2.2 - Prohibited Additives
The addition of nitrogen bearing additives, or additives designed to liberate oxygen is explicitly prohibited.

B.6.3 - Location
The entire fuel system, including carburetor, air cleaner cover, splash shield, and engine (excluding intake air hoses) must be located within the envelope of the vehicle’s roll cage. The envelope shall be tested by means of a straight edge in contact with any two points on the outside of the vehicle frame. The fuel tank mountings must be designed to resist sustained vibration and shock.

B.6.4 - Fuel Cap
A standard Briggs and Stratton gas cap with a built in check valve, Part B4325GS is required. The retail price must be included in the cost report.

B.6.5 - Fuel Tank
One fuel tank is permitted on the vehicle. Fuel tanks shall be unmodified and free from injurious defects. Fuel tanks are restricted to Briggs and Stratton part 799863. All fuel tanks shall be remote mounted, and not affixed to the engine. Fuel tank mounting shall be fixed. Removable tanks are explicitly prohibited.

Note: 799863 is the tank supplied with the Briggs and Stratton Model 20 engine during the 2016 season.

The retail price of the fuel tank must be included in the cost report.

B.6.5.1 - Mounting
Fuel tanks shall be mounted directly to a tube or tubes meeting the requirements of at least a secondary member. Cantilever mounting of fuel tanks to the vehicle frame is explicitly prohibited.

All four mounting holes on the fuel tank shall be used to mount the tank to the vehicle frame. Tabs used to join the fuel tank to the tubes of the vehicle frame shall be less than 50.8 mm (2.0 in) long, when measured along the tab from the center of the mounting hole to the outside of the attached frame member.

Any and all fasteners used to mount the fuel tank to the vehicle frame shall meet the requirements in Article 12 - Fasteners.
Figure B-39: Fuel System, Example of acceptable fuel tank mounting

B.6.6 - Fuel Lines and Filters

B.6.6.1 - Location
All fuel lines shall be located away from sharp edges, hot engine components and be protected from chafing or abrasion. Grommeting is required where the lines pass through any member of the vehicle. Fuel lines are prohibited in the cockpit.

B.6.6.2 - Rating
All fuel lines shall be SAE rated fuel lines. The Briggs and Stratton fuel line is SAE J30R14 or 30R7-RP. Bulk fuel line can be ordered through Briggs and Stratton and is part number 395051R.

B.6.6.3 - Size
All fuel lines shall be no larger than the stock fuel lines supplied with the engine. Fuel lines shall be no greater than 12.7 mm (0.5 in.) outer diameter and 6.3 mm (0.25 in.) inner diameter. The nominal size or trade size for the required fuel line is “1/4 inch”.

B.6.6.4 - Fuel Filters
If a fuel filter is used, it must be a Briggs and Stratton stock filter.

B.6.7 - Splash Shields
Splash shields are required to prevent fuel from accidentally being poured directly on the engine or exhaust while refueling or preparing to refuel the vehicle.

The splash shield shall be either metallic material (greater than 0.5 mm or 0.02 inches thick) or fuel-resistant non-metallic material (greater than 1.5 mm or 0.060 inches thick). Shields must be generally rigid, shaped such that any spilled fuel runs towards the outside of the vehicle, and does not pool on the shield. An example arrangement of splash shielding is shown in two views in Figure B-40.
Splash shields shall be mounted so they are engaged and effective at all times and are not adjustable. The splash shield must be mounted lower than the structural member supporting the fuel tank.

If the fuel line passes through the splash shield, it must either pass through a grommeted hole in the shield, or utilize a metallic barbed bulkhead union (recommended). With either method, the hole must be sealed to prevent spilled fuel from leaking to the engine.

![Figure B-40: Fuel System, Splash Guard Installation Example](image)

B.6.8 - Fuel Containers

All fuel must be transported in, and put into vehicle fuel tanks, from approved, unmodified containers. Approved, unmodified containers shall:

- Have a volume of 5.7 L (1.5 gal.) or less for fueling vehicles during endurance event.
- Have a volume of 18.9 L (5 gal.) or less for all other capabilities.
- Be equipped with an original cap to prevent spills when not in use.
- Be labeled with school name and car number.

Teams are required to bring all fuel to the fueling zone during the endurance event, see rule D.7.3.7 - Refueling.

Article 7 - Vehicle Controls

B.7.1 - Brake System

The vehicle must have a primary hydraulic braking system that acts on all wheels and is operated by a single foot pedal. The pedal must directly actuate the master cylinder through a rigid link (i.e., cables are not allowed). The brake system must be capable of locking and sliding all wheels, both in a static condition as well as at-speed on pavement and on unpaved surfaces.
B.7.1.1 - Independent Circuits
The braking system must be segregated into at least two (2) independent hydraulic circuits such that in case of a leak or failure at any point in one system, effective braking power shall be maintained on at least two wheels. Each hydraulic circuit must have its own separate fluid reservoir either through physically separate reservoirs or by the use of a full-height dam in an OEM-style reservoir.

B.7.1.2 - Brake Location
The brake(s) on the driven axle must operate through the final drive. Inboard braking through universal joints is permitted. Braking on a jackshaft through an intermediate reduction stage is prohibited.

B.7.1.3 - Cutting Brakes
Hand or feet operated “cutting brakes” are permitted provided the section B.7.1 is also satisfied. A primary brake system must be able to lock all four wheels with a single foot. If using two separate pedals to lock two (2) wheels apiece; the pedals must be close enough to use one foot to lock all four wheels.

Any and all brakes, when actuated, shall cause the brake light to illuminate.

B.7.1.4 - Brake Lines
All brake lines shall be securely mounted to the vehicle and not project below the vehicle frame or suspension components.

All brake lines shall be routed and oriented such that they are not pinched by steering or suspension parts, nor engaged with sharp edges.

All brake lines shall have full range of motion within the steering and suspension system.

At no time shall the brake lines be loaded in tension or become engaged with the vehicle’s tires and wheels.

All brake lines shall be designed for the pressures expected in the braking system, and be chemically compatible with the brake fluid in use.

No brake line may be constructed of plain, plastic tubing.

B.7.2 - Throttle System
The vehicle’s throttle system shall be capable of fully actuating the throttle arm to full throttle (100%) on the engine and return to idle (0% throttle) when released. The throttle shall remain in the as-inspected condition for the duration of the event. Re-inspection is available by appointment with Briggs and Stratton at the event site. “Throttle-by-wire” or other electronic throttle controls are explicitly prohibited.

B.7.2.1 - Pedal
Only mechanical, pedal (foot) operated throttle controls are allowed. The throttle pedal shall actuate a throttle cable.

Foot pedals shall be positioned to avoid entrapment of the driver’s foot when in any position.

Mechanical extensions such as thick pads or blocks may not be attached to the pedal or to the driver’s feet.
B.7.2.2 - Pedal Stop
A substantial, mechanical, wide-open throttle stop must be mounted at the pedal. Body panels or other flexible materials are explicitly prohibited.

B.7.2.3 - Throttle Cable
The throttle cable must be covered (sheathed or jacketed) from the forward mounting point in the cockpit and the vehicle firewall.

Throttle cables may be of “bicycle style” construction where the cable operates only in tension.

Throttle cables may be of “aircraft style” construction where the cable is capable of push-pull (tension-compression) operation.

B.7.2.4 - Fail Safe
All throttle controls shall be designed to return to the idle-stop in the event of a failure. The throttle cable must be covered (sheathed) between its forward mounting point and the firewall to prevent debris ingress.

B.7.3 - Other Control Systems

B.7.3.1 - Compressed Gas Systems
Compressed gas systems are allowed for vehicle control systems. For example, a compressed gas system may be used to change transmission states (i.e. shift gears). Compressed gas systems are explicitly prohibited from providing increased engine power and/or vehicle propulsion. The NTI reserves the right to require additional protections or safety features on any compressed gas system.

B.7.3.1.1 - Gas Composition
Compressed gas systems shall operate only with non-flammable or non-oxidizing gases. Air, nitrogen, and carbon dioxide are examples of acceptable gases. Methane, propane, oxygen, are examples of unacceptable gases.

B.7.3.1.2 - Gas Storage
Compressed gases shall be stored in containers meeting the following requirements.

a. Compressed gases shall be stored in cylinders (tanks) of propriety manufacture, designed and built for storage and operating pressures, certified by an accredited testing laboratory in the country of the cylinder’s origin, and be labeled or stamped appropriately.

b. The compressed gas cylinder shall be located within the roll envelope and aft of the RRH, protected from rollover and collision damage.

c. The compressed gas cylinder shall be protected from damage from failed rotating equipment.

d. The compressed gas cylinder shall be securely mounted to the vehicle frame, engine, or transmission, and oriented such that the longitudinal axis of the cylinder is not in line with the driver.

e. The compressed gas cylinder shall be insulated from excess heat such as the engine or exhaust.

B.7.3.1.3 - Gas Service Equipment
All service equipment in the compressed gas system shall meet the following requirements.
a. Pressure Regulators shall be rated for compressed gas service and be mounted directly to the compressed gas cylinder.

b. Any and all fittings or connectors in the compressed gas system shall be rated for the pressures and temperatures experienced downstream of the pressure regulator.

c. Any and all hoses, tubing, or other conveyances in the compressed gas system shall be rated for the pressures and temperatures experienced downstream of the regulator.

d. Any and all gauges, indicators, or other instrumentation in the compressed gas system shall be rated for the pressures and temperatures experienced downstream of the regulator.

B.7.3.1.4 - Compressed Gas Mechanisms
All compressed gas mechanisms, including cylinders, slides, actuators, or motors shall be rated for the pressures and temperatures experienced downstream of the regulator.

Article 8 - Cockpit

B.8.1 - Design Objective
The cockpit shall be designed to protect the driver and permit easy egress in an emergency.

B.8.2 - Cockpit Egress
Any and all drivers must be able to egress (exit) on either side of the vehicle within five (5) seconds. Drivers tested for egress time shall begin with all safety gear and be fully seated and secured in the vehicle with their hands on the connected steering wheel.

Egress time is timed from the instant either hand of the driver is removed from the steering wheel to the instant the driver is clear of the vehicle with both feet on the ground.

The NTI will select one or more drivers to perform the cockpit egress test.

Drivers unable to demonstrate successful egress will have their driver status revoked.

Each team is required to have a minimum of two designated drivers.

B.8.3 - Firewall
All vehicles shall have a firewall separating the cockpit from the engine and fuel tank compartments. The firewall shall be constructed of metal, at least 0.50 mm (0.02 in.) thick. The firewall shall be mounted in the plane of the RRH and cover the area between the ALC and BLC.

Multiple metal panels may be used to form the firewall, provided there are no gaps between the joints. Select cutouts are allowed for control or engine intake pass-through, provided the cutouts have proper grommeting and sealing.

B.8.4 - Front or Mid-Engine Vehicles
If the mounting points of the engine are completely forward of the RRH, then a firewall is not required to cover the area between within the plane of the RRH and between the LC’s of the RRH. If the mounting points of the engine are completely forward of the RRH, the following requirements must be met:

a. The fuel tank shall be enclosed in a sealed container that prevents fuel from leaking in the event of a fuel tank failure.
b. Splash shields must prevent fuel from being poured anywhere in the cockpit area during fueling.

c. The engine shall be completely enclosed and the enclosure shall protect the driver in the event of an engine failure. The engine enclosure shall be metal and meet the requirements of Article 9 - Powertrain Guards.

d. Engine enclosures must prevent fuel from spilling into the cockpit should the vehicle be involved in a collision or roll-over.

e. All engine compartment venting shall be directed away from the cockpit.

f. The driver must be able to egress from both sides of the vehicle.

g. The engine exhaust shall not exit in the direction of the driver and shall be shielded from contact by track workers and competition officials.

h. A panel, 300 mm x 300 mm (12 in. x 12 in.), shall be affixed to the vehicle in the plane of the RRH, on the right side of the driver’s head, and above the shoulder level of the tallest driver. This panel shall be used to affix the Technical Inspection sticker, and shall be easily viewed by track workers and competition officials.

B.8.5 - Body Panels
The cockpit must be protected with body panels that completely cover the area between the LFS and the SIM. No gaps can exist that are larger than 6.35 mm (0.25 in) and will be checked with a 6.35 mm (0.25 in dowel rod). These panels must be made of puncture resistant material, including: plastic, fiberglass, metal, or similar material. They must be designed to prevent debris and foreign object intrusion into the driver compartment. The panels must be mounted securely to the frame using sound engineering practices (cable ties or hook-and-loop fastening is not acceptable).

Note: Quick disconnect or easily accessible fasteners for body panels are recommended, and facilitate a faster technical inspection process.

B.8.6 - Skid Plate
The cockpit must be fitted with a skid plate (belly pan) over the entire length of the cockpit, so that the driver cannot contact the ground and is protected from debris while seated normally. Skid plate material must be metal, fiberglass, plastic, or similar material. They must be designed to prevent debris and foreign object intrusion into the driver compartment. Expanded metal, fabric, or perforated panels are not allowed.

B.8.7 - Shielding for Legs and Feet

B.8.7.1 - Linkages
All steering or suspension links exposed in the cockpit shall be shielded with a sturdy, robust, metal cover. The shielding must prevent the driver’s legs and feet from coming in contact, becoming entangled, or struck by during operation or a failure.

Note: Quick disconnect or easily accessible fasteners for cockpit steering & suspension covers are recommended, and facilitate a faster technical inspection process.
B.8.7.2 - Universal Joints

Universal joints in the steering system near the driver’s feet shall be shielded or sealed such that the driver may not become entangled in the joint.

Caution: Loose shoelaces can and have become entangled in universal joints and will hinder driver egress from the cockpit.

B.8.8 - Fire Extinguisher

All vehicles shall be equipped with a charged and functional fire extinguisher in the event of a fire on the vehicle, in the paddocks, or on the track. All team members shall be familiar with the use and operation of fire extinguishers.

B.8.8.1 - Rating and Required Features

All fire extinguishers for use on the vehicle shall have a minimum UL rating of 5BC. All fire extinguishers for use on the vehicle shall be equipped with a manufacturer installed dial pressure gauge. The dial pressure gauge shall be readily visible and indicate the unit has been properly charged. Each fire extinguisher shall be labeled with school name and vehicle number.

B.8.8.2 - Quantity

Each team shall have two or more fire extinguishers meeting the requirements above. One fire extinguisher shall be installed on the vehicle, and the remaining extinguishers shall serve as spares.

B.8.8.3 - Required Bracket

The only permitted fire extinguisher mounting brackets are the:

- Drake FIREX-MNT-DOR
- Drake FIREX-MNT-S-DOR

Note: It is recommended teams keep a spare mount available.

B.8.8.4 - Mounting

The fire extinguisher mounting bracket shall be mounted in the plane of the vehicle’s RRH. The fire extinguisher mounting bracket shall be affixed to the RRH via steel tabs with a minimum thickness of 3 mm (0.125 in.) thick.

Mounting hardware shall be flat socket head cap screws with a countersink angle and head diameter matching the required Drake bracket. Hardware used to secure the bracket to the vehicle frame shall meet all requirements of Article 12, Fasteners.

The fire extinguisher shall be affixed to the mount via hose clamps. The hose clamp adjusters shall be installed as not to interfere with the operation of the pull-knob on the Drake bracket. The hose clamp adjusters and protruding material shall be installed as not to snag on the clothing of a driver during vehicle egress.
B.8.8.5 - Location and Clearance

The fire extinguisher shall be positioned on the right side of the driver, within the cockpit such that the fire extinguisher is below the driver’s head, and the top half of the fire extinguisher is above the SIM. The fire extinguisher shall be easily accessible by track workers.

The pull knob of the required bracket shall be easily actuated. To facilitate this, a minimum radial clearance around the pull knob of 64 mm (2.5 in.) is required. It is understood the area aft of the pull knob will be less than 64 mm (2.5 in.) due to the design of the bracket. See figure for further clarification.

Note: Radial clearance is the unoccupied space between the edge of the pull knob and the nearest obstruction. The measurement is not made to the center of the pull knob.

![Figure B-41: Fire Extinguisher, Diagram of Clearance around Pull Knob (green)](image)

Article 9 - Powertrain Guards

B.9.1 - Powertrain Guards

All rotating powertrain components (CVTs, Gears, Sprockets, Belts and Chains) shall be shielded to prevent injury to the driver, track workers, or bystanders. Guards shall protect against hazardous release of energy should rotating components fail. Guards shall also protect against fingers, loose clothing, or other items from being entangled in the rotating components (pinch points). Universal joints, CV joints, hubs, rotors, wheels and bare sections of shafts are exempt from the requirements of B.9.1 and B.9.2.

B.9.2 - Hazardous Release of Energy

Powertrain guards and shields protecting against hazardous release of energy shall extend around the periphery of the rotating components (chains, gears, sprockets, belts, and CVT’s) and have a width wider than the rotating part the guard is protecting.

Note: This means the entire periphery of the primary CVT pulley, not just the belt width.

All powertrain guards shall be constructed of one or both of the following required materials:

- Steel, at least 1.5 mm (0.06 in.) thick, meeting or exceeding the strength of AISI 1010 steel.
• Aluminum, at least 3.0 mm (0.12 in.) thick, meeting or exceeding the strength of 6061-T6 aluminum.

Holes and/or vents in the portion of the powertrain guard surrounding the rotating components are acceptable provided that in the event of a powertrain failure, no parts can escape. No direct path shall exist tangent to any rotating components.

Powertrain guards shall be mounted and secured with sound engineering practices in order to resist vibration and shock.

B.9.3 - Pinch Points and Entanglement
Rotating parts in the powertrain system rotating faster than the final drive shall be guarded on all sides, in addition to the guard around the periphery. Guarding for pinch points shall prevent small, searching fingers from getting entrained in any rotating part. Flexible, non-rigid, fabric coverings such as "Frogskin", Ceconite, and neoprene are unacceptable for use as finger guards. Powertrain covers fastened with adhesive, ratcheting tie-downs, and other temporary methods are explicitly prohibited. All powertrain covers shall have resilient and durable mountings with easily accessed and actuated fastening devices.

A complete cover around the engine and drivetrain is an acceptable shield for pinch points, but does not relieve the requirement for release of hazardous energy.
Figure B-43: Powertrain Guard Example

B.9.4 - Stock, OEM Guards

Factory stock guards (OEM) shall meet the requirements in this article. Any OEM, factory stock guards that are not modified are exempt from the requirements in rule B.9.1 - Powertrain Guards and B.9.2 - Hazardous Release of Energy. OEM covers must still meet the requirements of B.9.3 - Pinch Points and Entanglement in way of the vent.

Article 10 - Electrical System

A minimum electrical system comprising of at least two engine kill switches, a brake light, brake switch, battery, and associated wiring is required. The vehicle electrical system shall be designed and constructed in accordance with good engineering and electrical practices.

B.10.1 - Power Sources

B.10.1.1 - Batteries

B.10.1.1.1 - Mounting

All batteries shall be mounted with sound engineering practices and not come loose during normal operation, a collision or rollover. Battery terminals shall be insulated and protected against an electrical short.

B.10.1.1.2 - Sealed Batteries

All batteries must be factory sealed and maintenance free. Batteries shall be incapable of being opened or serviced and not leak in the event of a collision or rollover.

B.10.1.1.3 - Non-Rechargeable Batteries

Batteries not recharged by an engine alternator shall only power safety appliances (brake light, reverse light, reverse alarm). Batteries not recharged by an engine alternator shall not power any control or actuation function in the drivetrain, steering, or suspension systems. Any battery used for safety
appliances (brake light, reverse light, reverse alarm) shall have sufficient electrical capacity to last the entire length of the endurance event.

B.10.1.1.4 - Rechargeable Batteries
Only batteries which are recharged by an engine alternator may be used to power control or actuation functions in the drivetrain, steering, or suspension systems.

B.10.1.2 - Engine Alternator
Only approved engine alternators may be used. See rule B.2.7.15 - Alternator for further information.

B.10.1.3 - Solar Panels
Solar panels are permitted to recharge on-board batteries.

B.10.2 - Wiring and Connectors
All vehicle wiring and connectors shall be cleanly and neatly installed. Wiring shall be routed away from sources of excessive heat, abrasion, chafing, and possible short circuit. Wiring shall be installed and routed such that it does not become a hazard to cockpit egress.

B.10.3 - Engine Kill Switches

B.10.3.1 - Quantity
Each vehicle shall be equipped with a minimum of two (2) engine kill switches.

B.10.3.2 - Required Switch
The vehicle shall be equipped with one or more of the following required switches:

- Polaris Part 4013381
- Ski-Doo Part 01-171 (http://www.mfgsupply.com/01-171.html)

Note: Older versions of the approved switches are allowed.

B.10.3.3 - Location

B.10.3.3.1 - Cockpit Switch
One of the required kill switches shall be located in the cockpit within easy reach of a driver that is properly seated and secured in the vehicle. Cockpit kill switches may not be located on removable steering wheels.

B.10.3.3.2 - External Switch
One of the required kill switches shall be located within easy access to track workers on the right side of the vehicle, aft of the plane of the RRH, and forward of the right FABur. The external kill switch shall be generally perpendicular to the firewall (±15 deg), below frame point Br, and no further than 180 mm (7.0 inches), dimension “Z” in Figure B-44, below frame point Br, and shall be mounted on a tab connected directly to the RRH. The external kill switch shall not be recessed more than 51 mm (2.0 inches) from the outside edge of the RRH tube.
B.10.3.4 - Mounting

All engine kill switches shall be rigidly mounted to the vehicle frame with unobstructed access to the switch. All engine kill switches shall be free and clear of sharp edges or other hazardous conditions to track workers or the driver. All switches shall be mechanically fastened to the frame. Adhesives are explicitly prohibited. Any and all fasteners used to mount an engine kill switch shall meet the requirements of Article 12 - Fasteners.

Exception: Rivets are acceptable fasteners for fastening kill switches to the mounting tab.

B.10.4 - Signaling

B.10.4.1 - Brake Light

All vehicles are required to have a functional brake light to signal to other drivers the vehicle is stopping or slowing down.

B.10.4.1.1 - Required Brake Light

Only the following brake lights are permitted. Brake lights not listed are explicitly prohibited. Modification of the brake light from the OEM design is explicitly prohibited. All brake lights shall be configured to be fully illuminated when the brakes are applied, and completely extinguished with the brakes are released.

- Polaris Part # 2411450
- Polaris Part # 2411099
- Polaris Part # 2411092-432
- Haul-Master – Part # 93263
- Command Electronics Part # 003-6018R
- Command Electronics Part # 003-6016

B.10.4.1.2 - Location and Orientation

The vehicle brake light shall have a resilient and durable mount and be positioned at a minimum of 1000 mm (39.4 in.) above the ground. The vehicle brake light shall be oriented to be visible to trailing vehicles and shine parallel to the ground or at a slightly downward angle. Brake lights angled (aimed) above a horizontal plane are not permitted.
B.10.4.1.3 - Brake Light Switch
The brake light shall be activated only by a hydraulic pressure switch installed in the brake hydraulic lines. Each independent hydraulic brake circuit must be equipped with a hydraulic pressure switch. Cutting brakes are required to activate the brake light by way of a hydraulic pressure switch.

Note: Mechanical switches, push or pull, are explicitly prohibited.

B.10.4.2 - Reverse Light
Vehicles with a reverse gear shall be equipped with a reverse light. The reverse light shall illuminate when the vehicle is shifted to reverse gear and is extinguished when the vehicle is shifted out of reverse gear.

B.10.4.2.1 - Specification
Reverse lights shall be marked with an SAE “R” on the lens of the reverse light and be of LED design, equal to or exceeding the SAE standard J759.

B.10.4.2.2 - Location and Orientation
The reverse light shall have a resilient and durable mount and be positioned at a minimum of 700 mm (27.6 in.) above the ground. The reverse light shall be oriented to be visible to trailing vehicles and shine generally parallel to the ground.

B.10.4.3 - Reverse Alarm
Vehicles with a reverse gear shall be equipped with an audible reverse alarm. The reverse alarm shall sound when the vehicle is shifted to reverse gear and silenced when the vehicle is shifted out of reverse gear.

B.10.4.3.1 - Specification
Required reverse alarms shall be rated to meet the SAE standard J1741 or J994.

B.10.4.3.2 - Location
Required reverse alarms shall be mounted to the vehicle frame aft of the plane of the RRH.

B.10.5 - Instrumentation
Vehicles may be equipped with instrumentation to provide operational or performance information to the driver. All vehicle instrumentation must be included in the cost report.

B.10.6 - Data Acquisition
Vehicles may be equipped with data acquisition (data logging) systems. Data acquisition systems providing live feedback to the driver or telemetry data to the team must be included in the cost report. Data acquisition systems not providing live data to the driver and/or telemetry data to the team may be excluded from the cost report.

B.10.7 - Communication Systems
Teams are permitted to use radio-frequency (RF) communications systems. Any team using RF systems shall comply with federal, state, and local regulations based on the location of the event. At no point may a team’s RF systems cause harmful interference to the voice or data systems in service of competition officials or emergency responders.
B.10.7.1 - Voice
Vehicles are permitted to use RF voice communications systems. RF Voice communication systems and equipment may be excluded from the cost report.

B.10.7.2 - Data
Vehicles are permitted to use RF data communications systems. All RF data communications systems and associated equipment shall be included from the cost report.

Article 11 - Tow Points

B.11.1 - General Requirements
Each vehicle must have towing hitch points at the front and rear, along its longitudinal centerline. These hitch points are used both for dynamic events and for vehicle recovery. Tow points must be attached to the vehicle frame and must allow for transmission of both longitudinal and lateral towing loads. Towing loads will be imparted to the tow point by way of hook or clevis. Tow points shall have sufficient strength to serve as a vertical lift point for the vehicle.

B.11.2 - Front Tow Point
Front tow points shall be constructed of tubular steel, not to exceed 31.75 mm (1.25 in.) and not less than 25.4 mm (1.0 in.) in diameter. Tubing thickness shall not be less than 0.89 mm (0.035 in.).

Front tow points shall be mounted no higher than the vehicle’s SIM and not below the vehicle’s LFS.

The front tow point shall be able to freely pass a gauge measuring 50.8 mm tall, 50.8 mm deep, and 203.2 mm wide (2.0 in. x 2.0 in. x 8.0 in.) behind the front tow point tube. See Figure B-45 for further information.

Note: Front numbers may not interfere with the tow point.

B.11.3 - Rear Tow Point
Rear tow points shall be constructed from steel and meet the following requirements. See Figure B-47 for further information.
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab Thickness</td>
<td>None</td>
<td>3.18 mm (0.125 in)</td>
<td>9.5 mm (0.375 in)</td>
</tr>
<tr>
<td>Hole Diameter</td>
<td>D</td>
<td>25.4 mm (1.0 in.)</td>
<td>31.75 mm (1.25 in.)</td>
</tr>
<tr>
<td>Hole-to-Tube Offset</td>
<td>X</td>
<td>19.0 mm (0.75 in.)</td>
<td>25.4 mm (1.0 in.)</td>
</tr>
<tr>
<td>Edge Distance</td>
<td>R</td>
<td>15.9 mm (0.625 in.)</td>
<td>25.4 mm (1.0 in.)</td>
</tr>
<tr>
<td>Width at Frame Connection</td>
<td>Y</td>
<td>76.2 mm (3.0 in.)</td>
<td>Unrestricted</td>
</tr>
</tbody>
</table>

Figure B-46: Tow Point, Table of Tow Point Dimensions

Figure B-47: Tow Point, Rear Tab Dimensions

Article 12 - Fasteners

B.12.1 - Scope

Fasteners in the following vehicle systems shall meet the requirements of this article.

- Driver Harness
- Fuel System
- Fire Extinguisher
- Engine Kill Switches

B.12.2 - Captive Fasteners

Fasteners shall be made captive by the use of the following:

- Nylon Locknuts
- Cotter Pins
- Safety Wire (for blind hole applications)

Lock washers and/or thread sealants do not satisfy the requirements of this rule.
B.12.3 - Thread Projection
To provide for proper thread engagement in the lock nut, threaded fasteners shall have at least two (2) threads projecting past the end of the nut.

B.12.4 - Grade
Threaded fasteners shall meet or exceed one or more of the following strength grades:

- SAE Grade 5
- Metric Grade 8.8
- AN/MS specifications

Figure B-48 below depicts bolt markings meeting or exceeding requirements above.

![Figure B-48: Fasteners, acceptable markings](image)

B.12.5 - Proof of Grade
For fasteners without markings as described above, proper documentation shall be supplied which requires a purchase receipt and manufacturer’s specification (including markings) indicating the fastener strength exceeds or is equivalent to the requirements of B.12.4 - Grade.

Note: Teams using fasteners with readily visible grade markings will reduce their time in technical inspection.

B.12.6 - Unmarked or Custom Fasteners
Any threaded fastener (threaded rod, eye bolts, titanium bolts, etc.) that is unmarked, or does not have any markings as listed, must be documented by one or both of the following:

- A purchase receipt and manufacturer’s documentation indicating the fastener meets or exceeds Grade 5 standards for that size.
- Equivalency calculations with a purchase receipt or test data showing that the fastener exceeds the strength for a Grade 5 fastener of the same size.

B.12.7 - Modified Fasteners
Fasteners which have been modified in any way other than: drilling for safety wire or shortening of the shank (threads) shall be proven to the NTI to meet the requirements of this article.
Article 13 - Vehicle Identification and Markings

B.13.1 - Vehicle Number Assignment
Numbers are automatically assigned as part of the online registration for all U.S. and Canadian Baja SAE® competitions. Assigned numbers may be found on the Baja SAE® website in the “Registered Team List” for each competition. For competitions outside the U.S. and Canada, vehicle numbers will be assigned by the respective organizers.

B.13.2 - Transponders
For U.S. and Canadian Baja SAE® competitions, a transponder system is used for timing and scoring. All Baja SAE® vehicles are required to have a transponder. Vehicles must carry a functional, properly mounted and fully charged transponder of the specified type. Vehicles without the specified transponder will not be allowed to compete in any event for which a transponder is used for timing.

B.13.2.1 - Required Transponder
All vehicles must be equipped with at least one MYLAPS rechargeable transponder. The only acceptable transponder types are:

- Classic MX
- Flex MX
- X2 MX

Subscriptions for Flex MX or X2 MX transponders must be up-to-date and all Flex MX and X2 MX transponders must have been activated prior to Transponder Check at Technical Inspection. The timing system is capable of recording two transponder identifications per vehicle; therefore, a second transponder may be mounted as a backup if desired.

Visit http://www.mylaps.com for more information.

B.13.2.2 - Purchase
All teams are responsible for purchasing their transponder(s) directly through MyLaps. http://www.mylaps.com

B.13.2.3 - Mounting
All vehicle transponders shall be mounted in the proper location, correctly oriented, and using sufficient fastening methods.

B.13.2.3.1 - Orientation
The transponder shall be installed vertical to the frame in the orientation shown in figure. The transponder shall also be oriented so the transponder number can read “right-side up.”
B.13.2.3.2 - Location

The transponder shall be mounted on the right side of the vehicle, forward of the seat, and preferably within the lower horizontal plane of the front suspension. The transponder shall be no more than 61 cm (24 in) above ground level.

The transponder shall have an open, unobstructed path between the antenna on the bottom of the transponder and the ground.

Caution: Metal and carbon fiber may interrupt the transponder signal.

Note: The transponder signal will normally transmit through fiberglass and plastic.

Figure B-50: Transponder, Mounting Location

B.13.2.3.3 - Fastening

Each transponder is supplied with a mounting bracket. Teams are advised to weld a small plate to their frame to attach the transponder mounting bracket. The bracket can be attached with rivets, cable ties or bolts.

Note: Attaching the bracket with 4 mm (0.160 in.) pan-head or flat-head bolts with lock nuts or lock-wire is suggested.
B.13.2.3.4 - Interference
RF systems transmitting voice and/or data can cause harmful interference with the signal transmitted by the transponder. Care should be taken when designing, fabricating, or maintaining RF systems near the transponder.

Note: The transponder equipment operates at a frequency of 3.59 MHz.

B.13.3 - Vehicle Numbers
Vehicle numbers are used by the organizers and officials to positively identify team vehicles. Teams must design numbers to be visible in all race conditions or keep them clean and conspicuous.

Caution: Numbers that are not easily read may be black flagged and might not be scored during the endurance event.

B.13.3.1 - Required Numbers
Three primary numbers in block-style numerals are required to be securely affixed to the car. The vehicle’s number shall be readily visible from the left side, right side, and the front of the vehicle and strongly contrast with the number’s background color.

B.13.3.2 - Location

B.13.3.2.1 - Side Numbers
Side numbers, mounted to the left and the right sides of the vehicle, shall be mounted above the SIM and aft of the plane of the RRH.

B.13.3.2.2 - Front Number
The angle of the plane of the front-facing numbers, when affixed to the vehicle above the SIM, shall be less than or equal to 45 deg. from vertical.

The angle of the plane of the front numbers, when affixed to the vehicle below the SIM, shall be less than or equal to 15 deg. from vertical.

B.13.3.3 - Number Size
The primary cutout numbers must be at least 203 mm (8.0 in) high, dimension “H” in Figure B-51. The primary cutout numbers shall have a minimum line width of 25 mm (1.0 in.) (dimension “S” in Figure B-51) and a minimum character width of 102 mm (4.0 in) (dimension “W” in Figure B-51). The primary cutout numbers shall be mounted such that the projecting face is a minimum of 13 mm (0.5 in) from the background panel (dimension “D” in Figure B-51).

Note: Schools which are entering more than one vehicle should consider painting them in individually distinctive colors to facilitate in lap counting.

Note: Avoid sharp edges or points on the inner and outer edges of the cutout numbers.

B.13.3.4 - Backing Panel
Each number on the vehicle shall have a highly contrasting background to facilitate easy reading. Numbers may be outlined to provide enhanced contrast. Number backing panels must be securely fastened to the vehicle frame.
Two (2) SAE International logos must be displayed on the vehicle in prominent locations. These will be distributed during registration at the competition.

B.13.5 - Sponsor Identification

Teams may display advertising from their vehicle’s sponsors, provided it is in good taste and does not conflict with the vehicle’s number. SAE International may require all entrants to display advertising from the competition sponsors.
Part C: Static Events

The content of section C applies to US and Canadian Events for the 2018 competition year.

Article 1 - Scoring Summary

All teams are expected to participate in all static judging and may be excluded from dynamic events if they do not participate in static events.

<table>
<thead>
<tr>
<th>Static Event Points</th>
<th>Maryland</th>
<th>Kansas</th>
<th>Oregon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Evaluation</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Cost Report</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Prototype Cost</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Sales Presentation</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Figure C-1: Static Events, Table of Points

Article 2 - Technical Inspection

C.2.1 - Overview

All Baja SAE® vehicles shall pass a technical inspection before they are permitted to operate under power. The inspection will determine if the vehicle satisfies the requirements and restrictions of the Baja SAE® rules. If vehicles are not ready for technical inspection when they arrive at the inspection site, they will be sent away. Teams sent away must prepare their vehicle accordingly and return to the inspection site ready for inspection. Any vehicle may be re-inspected at any time during the competition and correction of any non-compliance will be required.

C.2.2 - Procedure

Technical inspection will consist of three (3) separate parts as follows:

C.2.2.1 - Engine Inspection

Briggs & Stratton Technical Representatives will set the governors of all vehicles. Vehicles must be presented for governor setting with the engine output shaft bare and free of any objects, the drivetrain disconnected from the engine, the throttle cable disconnected from the engine, and functioning engine kill switches. Each vehicle engine must be inspected by Briggs and Stratton technical staff that will:

- Confirm the engine’s compliance with the rules and
- Set the governor to the specified engine speed (3,800 RPM)

The engine inspection (with the engine installed in the vehicle) must be passed, before a team may apply for Technical Inspection.
C.2.2.2 - Technical Inspection
Each vehicle will be inspected to determine if it complies with the requirements and restrictions of the Baja SAE® rules. Each team must bring the following items to inspection:

- Frame Material Documentation: Receipts documenting the materials purchased, or otherwise acquired, and used to build the frame.
- Roll Cage Specification Sheet: A signed and completed copy of the Roll Cage Specification Sheet
- Technical Inspection Sheet: A properly completed Technical Inspection Sheet, see www.bajasae.net/go/downloads
- Drivetrain Check Sheet: A properly completed Drivetrain Check Sheet
- Drivers Present: All drivers must be present at technical inspection.

The Technical Inspection must be passed before a team may apply for Dynamic Brake Check.

C.2.2.3 - Dynamic Brake Check
At Dynamic Brake Check, both the external and cockpit kill switches will be tested for functionality before the vehicle is allowed to proceed. If both switches pass the test, then the vehicle will be dynamically brake tested. Each vehicle must demonstrate its ability to lock all four wheels and come to rest in an approximately straight line after acceleration run specified by the inspectors. If a vehicle fails to pass any part of the inspection, it must be corrected and brought into compliance with the rules before the vehicle is permitted to operate.

C.2.3 - Preparation
Teams presenting Technical Inspection Sheets that are incomplete, inaccurate (i.e. do not correspond to the actual condition of the vehicle), are found to have four (4) or more items not in accordance with the rules, or do not represent a serious effort at pre-inspection will be denied inspection at that time and sent back to the end of the inspection line.

C.2.4 - Technical Inspection Sheet

C.2.4.1 - Pre Inspection Requirements
Before bringing their vehicle to technical inspection each team must

- Pre-inspect the vehicle for compliance with the rules
- Complete the official technical inspection sheet (available at www.bajasae.net/go/downloads)
- Have the completed inspection list signed by the faculty advisor and team captain. Required reading includes for news and important information includes: www.bajasae.net/go/news.

C.2.4.2 - Inspection Sheet Version
Teams must download the most current version of the technical inspection sheet within two weeks of the competition and thoroughly inspect their vehicle in accordance with the technical inspection sheet.

C.2.5 - Inspection Stickers
A multi-part inspection sticker will be issued in sections to each vehicle as each of the three parts of technical inspection is completed. The inspectors will place the inspection sticker on the right side of the firewall above the driver’s shoulder. The inspection sticker must remain on the vehicle throughout the competition. Vehicles without all parts of the inspection sticker may not be operated under power.
Any or all parts of the inspection sticker may be removed from any vehicle by the NTI that has been damaged or which is reasonably believed may not comply with the rules.

C.2.6 - As Approved Condition

C.2.6.1 - Modifications
Once a vehicle has passed technical inspection its configuration may not be modified. All accessory components such as roofs, wings, bumpers, etc. are considered part of the configuration and must remain on the vehicle at all times.

C.2.6.2 - Repairs
Approved vehicles must remain in “as-approved” condition throughout the competition. Any repairs of a part that is not identical as the broken part must be approved prior to the repair.

C.2.6.3 - Non-Matching Components
Non-identical parts not approved will be subject to an appropriate performance penalty.

C.2.6.4 - Tuning
Minor adjustments permitted by the rules and normal vehicle maintenance and tuning are not considered modifications.

Article 3 - Design Evaluation

C.3.1 - Objective
The objective of the engineering design evaluation event is to evaluate the engineering effort that went into the design of the vehicle and how the engineering meets the intent of the market, as detailed in the A.1.2 - Program Objective and the A.1.3 - Design Subject. Students will be judged on the creation of design specifications and the ability to meet those specifications, computer aided drafting, analysis, testing and development, manufacturability, serviceability, system integration and how the vehicle works together as a whole. Each of these parts of the engineering product development cycle will be judged within the following subsystems: Suspension, Steering, Brakes, Drivetrain/Powertrain, Chassis and ergonomics.

The vehicle that illustrates the best use of engineering to meet the design goals and the best understanding of the design by the team members will win the design event.

Teams are reminded that Baja SAE® is an engineering design competition and that in the Engineering Design Event, teams are evaluated on their design. Components and systems that are incorporated into the design as finished items are not evaluated as a student designed unit, but are only assessed on the team’s selection and application of that unit. For example, teams that design and fabricate their own shocks are evaluated on the shock design itself as well as the shock’s application within the suspension system. Teams using commercially available shocks are evaluated only on selection and application within the suspension system.

C.3.2 - Metrics
The engineering design event student guide and score sheet can be found at www.bajasae.net/go/downloads.
The engineering design event consists of two parts: Design Evaluation and a Design Report that will be used as a part of the design evaluation.

C.3.3 - Design Documents

C.3.3.1 - Overview
The design evaluation judging will start with submission, before the event, of a Design Report. The Design Report will be reviewed by the design judges who will ultimately judge the team and vehicle at onsite Design Evaluation.

C.3.3.2 - Document Submittal
The Design Report must be submitted electronically in Adobe Acrobat Format (PDF). The document must be a single file (text, drawings and optional content are all inclusive). The maximum size for the file is 5 MB. The cost report must also be submitted electronically in Microsoft Excel Format (XLS or XLSX file. Cost documentation must be submitted as an Adobe Acrobat Format (PDF).

Design Spec Sheets must be submitted electronically on BajaSAE.net in Microsoft Excel® Format (XLSX file). The format of the Spec Sheet shall not be altered.

C.3.3.3 - Format
The Design Report must not exceed eight (8) pages, consisting of not more than four (4) pages of text, three (3) pages of drawings (C.3.5 - Design Report) and one (1) optional page containing content to be defined by the team (photo’s, graphs, etc.). All pages must be either 8½” x 11” or A4 size.

If a team submits a Design Report that exceeds four (4) pages of text, three (3) pages of drawing and one (1) optional page, then only the first four pages of text, three pages of drawings and first optional page will be read and evaluated by the judges. If included, cover sheets and tables of contents will count as text pages.

C.3.3.4 - Content
The Design Report should contain a brief description of the vehicle with a review of a team’s design objectives, vehicle concepts, and a discussion of any important design features. The team should note or describe the application of analysis and testing techniques (FEA, part/system/vehicle testing, etc.). Evidence of this analysis and back-up data should be brought to the competition and be available, on request, for review by the judges.

C.3.4 - Design Specification Sheet
A completed Design Specification Sheet must be submitted. The Design Specification Sheet template can be found at www.bajasae.net/go/downloads. Do not alter or re-format the template prior to submission.

The design judges realize that final design refinements and vehicle development may cause the submitted figures to diverge slightly from those of the completed vehicle. For specifications that are subject to tuning, an anticipated range of values may be appropriate.

The Design Report and the Design Spec Sheet, while related, are independent documents and must be submitted as two (2) separate files.
C.3.5 - Design Report
The Design Report must include one set of three (3) view drawings showing the vehicle, from the front, top, and side. Each drawing shall appear on a separate page. The drawings can be manually or computer generated. Photos should be placed on the optional page and will not be counted as drawings.

C.3.6 - On-site Evaluation
The design judges will evaluate the engineering effort based upon the team's Design Report, responses to questions, and an inspection of the car.

The design judges will inspect the car to determine if the design concepts are adequate and appropriate for the application (relative to the objectives set forth in the rules).

It is the responsibility of the judges to deduct points if the team cannot adequately explain the engineering and construction of the car.

C.3.6.1 - Design Score Sheet
The Design Judging Score Sheet is available at www.bajasae.net/go/downloads. The judges strongly urge all teams to read and study the score sheet and all other documents related to design judging that are available on the website.

C.3.6.2 - Support Material
Teams may bring with them to Design Evaluation any photographs, drawings, plans, charts, example components, or other materials that they believe are needed to support the presentation of the vehicle and the discussion of their development process. Use of laptop or notebook computers, posters, and binders is allowed, but projectors may not be used.

C.3.6.3 - Judging Format
The actual format of Design Evaluation may change from year to year as determined by the organizing body and can be found at www.bajasae.net/go/downloads.

Design Evaluation is typically organized as follows:

- Initial judging of all vehicles
- Final judging ranking the top 3 to 10 vehicles.

C.3.6.4 - Design Finals

C.3.6.4.1 - Overview
The purpose of Design Finals is to reward and call attention to those vehicles judged to have the best engineering designs. Design Finals are held after the conclusion of Design Evaluation so that the finalists may be chosen, and then judged as described in section C.3.6.4.2 - Presentation Format. The number of finalists may vary from as few as three to as many as ten, as determined by the number of entries and the results of Design Evaluation.

C.3.6.4.2 - Presentation Format
One or more team members may make the presentation to the judges. The presentation itself is limited to a maximum of nine (9) minutes. Following the presentation there will be approximately one (1) minute for clarification questions from the judges. Only the judges are permitted to ask questions. Any team member
on the presentation floor may answer the questions even if that member did not speak during the presentation itself.

It is recommended that teams bring a laptop computer, binders or posters to show documentation or the engineering they have completed, but no projectors will be allowed.

C.3.7 - Design Comparison Requirement
Teams with vehicles that finished in a top ten position in any of the previous year’s Baja SAE® competitions are classified as having created a “successful design.” Teams that created such successful vehicles are required to provide a comparison, using the template described below, of their current design with their previous year’s design even if the current design is entirely new. Teams shall be prepared to present their design comparison when requested by the design judges.

If the judges find that the design changes are not significant, not supported by a detailed analysis, or have not been sufficiently documented, then a penalty of up to one hundred-fifty (150) points may be assessed against the design score.

C.3.7.1 - Redesign Comparison Document
The design comparison report must follow the template found at www.bajasae.net/go/downloads and should be accompanied with your design report as an addendum in a separate single file.

The documentation should be a year to year comparison of the major structure and/or systems of the vehicle and may consist of any, or all, of the following, supported by appropriate captions:

1) Plans
2) Drawings
3) Photographs

Design changes to correct failures of the previous design should be accompanied by a thorough analysis of why the failure occurred and the theoretical data supporting the new design, etc. The comparison report must be attached to the design report as an addendum and submitted electronically in Adobe Acrobat Format (PDF). The document (design report and the design comparison document as an addendum) must be a single file (text, drawings and optional content are all inclusive.)

C.3.8 - Scoring
The engineering design event will be worth 150 points.

The judges may at their discretion award the highest placing team less than the maximum noted above. Design finalist may also receive bonus points that could make their scores higher than the maximum noted above.
Article 4 - Cost Evaluation

C.4.1 - Objective
The purpose of the Cost Event is to provide teams an opportunity to show the cost/benefit design decisions used in their prototype vehicle. The Cost Event aims to represent a comparable model for each team to be measured against. Revisions in the Cost Event for the 2018 Competition Season are an effort to streamline the costing and evaluation processes and provide a more comparable and fair costing model.

The sections below are an introduction to these revisions; however they are incomplete at the time of publication. For up-to-date information on the 2018 Cost Event, please refer to http://www.bajasae.net/go/cost and check back through the fall as this information is updated.

C.4.2 - Cost Report
The Cost Report will be summarized in an online format where teams can complete their overall BOM (Bill of Materials) with material and manufacturing costs.

C.4.2.2 - Costing Sheets
The core of the report is the series of costing sheets. Beginning in 2018, the format of these sheets will follow the online format. See http://www.bajasae.net/go/cost for descriptions of these sheets and the instructions on how to use them.

C.4.2.3 - Cost Documentation
Cost Documentation is required for all purchased components and material costs. Starting in 2018, this documentation will come from a common database of material and component costs. These items may be very specific, or may be generalized into a cost category of material/components. If a team's purchased material/components are not in the common database, the team may submit an “Add Item Request” for their specific material or component for approval. Once submitted and approved, that material is available for all teams to use in their BOM. See http://www.bajasae.net/go/cost for more detail on this database and how to use it in your Costing Sheets.

C.4.2.4 - Cost Adjustment Form
The purpose of the cost adjustment form is to make additions to a previously submitted report. Items may be deleted, but the total adjustment for the individual component categories must be positive (cost will not be subtracted). This gives the team the chance to add items that were not previously planned. It is not an opportunity to redo the entire report. For teams that are cost-audited and going to multiple races, the items found during the cost audit cannot be included in this sheet. The total amount of adjustments may not exceed 10% of the total cost of the vehicle previously submitted. If the adjustment exceeds 10%, the additional amount will be added with a multiplier of 3 times (3x). If the adjustment exceeds 25%, the report will be considered incomplete and will not be graded. Details on how to submit this Cost Adjustment form will be provided at http://www.bajasae.net/go/cost during future updates.
C.4.2.5 - Multi-Use Report
Teams that are entering more than one North American Baja SAE® competitions must submit a single multi-competition cost report. Multi-competition cost reports must identify all the competitions to which the report applies and the vehicle number for each event.

C.4.3 - On Site Evaluation
Teams may be required to meet with a cost auditor during the competition to ensure that the vehicle presented at the competition matches with the BOM submitted during in the Cost Report.

C.4.3.1 - Cost Audit
The judges may increase costs and/or fabrication times if they believe that the figures submitted are below current prices for the item, source, or process involved. Prices or times that are higher than the judge expects will not be corrected. Mathematical errors will be penalized. Reports that are highly inaccurate, highly incomplete, or in which the costs cannot be substantiated, may be rejected in their entirety and scored accordingly. Teams that are required to bring their car to on-site cost judging must do so by their scheduled appointment. Failure to report by the scheduled appointment time will result in an automatic zero for the event. If teams need to reschedule their appointment, it must be done prior to their appointment. Teams selected for cost audits will be notified by SAE International at registration.

C.4.3.2 – Additional Team Review
The judges reserve the right to review with any team during the competition the accuracy of their BOM relative to the vehicle brought to competition. This includes teams who were chosen for audits as well as teams who were not originally chosen and notified.

C.4.4 - Scoring
Cost Event scoring for the 2018 Competition Season will be consistent with past events.

C.4.4.1 – Cost Report Score
The Cost Report score is a maximum of 15 points and is associated with completion of the Cost Report. For details on how these points may be obtained, please refer to http://www.bajasae.net/go/cost for updates on this portion of the score.

C.4.4.2 - Prototype Cost
The Prototype Cost score is a maximum of 85 points and is based upon the Prototype Cost, as adjusted by the judging process, as compared with other vehicles at the competition.
Prototype Cost score will be calculated as follows:

\[S_{cs} = 85 \times \frac{C_{max} - C_{team}}{C_{max} - C_{min}} \]

Where:
\(C_{team} \) Vehicle cost, as corrected
\(C_{min} \) lowest vehicle cost, as corrected
\(C_{max} \) highest vehicle cost, as corrected
C.4.4.3 - Cost Eligibility

Teams that do not successfully pass technical inspection by 12:00 PM on the first day of dynamic events will not receive any points for prototype cost. Upon review of the data, the cost judge reserves the right to disqualify cost reports that have not been sufficiently validated (i.e. either through lack of documentation or outdated receipts), are determined to not be complete based on review, or are outside a reasonable level of cost based on the other cars in the competition (i.e. either too high or too low).

Article 5 - Sales Presentation

C.5.1 - Objective

The objective of the Sales Presentation is for the team to convince the “executives” of a hypothetical manufacturing company to purchase the team’s Baja SAE® vehicle design and put it into production at the rate of 4,000 units per year.

C.5.2 - Audience

For the purpose of the presentation, teams are to assume that the judges are to be a mixed group of corporate executives who may have experience in marketing, production and finance as well as engineering.

C.5.3 - Format

One or more team members may make the presentation to the judges. The presentation itself is limited to a maximum of ten (10) minutes.

Following the presentation there will be an approximately five (5) minute question period.

Only the judges are permitted to ask questions. Any team member on the presentation floor/stage may answer the questions even if that member did not speak during the presentation itself.

C.5.4 - Scoring

The Sales Presentation event will be scored based on such categories as:

1) The content of the presentation,
2) The organization of the presentation,
3) The effectiveness of the visual aids,
4) The speaker’s delivery, and
5) The team’s responses to the judge’s questions.

C.5.4.1 - Determination of Winner

The team that makes the best presentation will receive the highest score regardless of the finished quality of their actual vehicle. The team’s score will be the average of the individual judge’s scores. The maximum standard points a team can be awarded is 50 points.

C.5.4.2 - Bonus

The presentation judges shall apply bonus points to the top three (3) teams of the presentation event in the event of a tie. This bonus can range from 0-5 points and is applied at the discretion of the presentation judges.
Part D: Dynamic Events

The dynamic events are intended to determine how Baja SAE® vehicles perform under a variety of conditions. Note that the organizers may modify the dynamic events to address local conditions, weather or resources. The content of Section D applies to US and Canadian Events for the 2018 competition year.

Article 1 - Scoring Summary

<table>
<thead>
<tr>
<th>Dynamic Event Points</th>
<th>Maryland</th>
<th>Kansas</th>
<th>Oregon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Hill Climb or Traction</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Land Maneuverability</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Suspension or Rock Crawl</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Endurance</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

Figure D-1: Dynamic Events, Table of Points

Article 2 - Practice

D.2.1 - Objective
Organizers may or may not provide a practice track to teams. A practice track allows teams to test or tune their vehicle within the limits of the rules.

D.2.2 - Course
If the organizer provides a practice track, the course length and features are at the organizer’s discretion.

D.2.3 - Procedure
After a safety check, vehicles are signaled to enter the practice track. After a predetermined time set by the track worker, the vehicle is signaled to exit the practice track.

D.2.4 - Penalties
Teams may be signaled to exit the practice track or barred from using the practice track if the track worker or competition officials observe unsafe conditions or behaviors.

D.2.5 - Signals and Signage
See D.8.9 - Signals and Signage.

D.2.6 - Scoring
There is no score awarded for practice.
Article 3 - Acceleration

D.3.1 - Objective
The Acceleration Event is designed to measure each vehicle’s ability to come up to speed quickly from a standing start.

D.3.2 - Course
Acceleration is measured as the time to complete a 30.48 m (100 ft.) or 45.72 m (150 ft.) flat, straight course from a standing start. The course surface may vary from pavement to loose dirt. The choice of course length and surface is at the organizer’s discretion.

D.3.3 - Procedure
After a safety check, vehicles are positioned at the start line of the course. The track worker will check that the driver is ready to begin. Once the driver is ready, the track worker will signal the driver to proceed down the course. After completing the run on the course, the vehicle will be directed to the course exit.

Each vehicle may make two (2) runs on the course.

D.3.4 - Penalties
- Stall At Start – Run DQ
- False Start – Run DQ
- Driving off Course – Run DQ

The organizer may modify the penalties imposed for different violations to account for differences in the length or design of specific event courses.

D.3.5 - Signals and Signage
See D.8.9 - Signals and Signage.

D.3.6 - Scoring
The maximum number of available points for the acceleration event is 75 points.

Scoring will be based on the better of the two attempts. Timing will be performed with an electronic timing system.

The following equation will be used for the acceleration score (S_{ac}):

$$S_{ac} = 75 \times \frac{t_{max} - t_{run}}{t_{max} - t_{min}}$$

Where:

- t_{min} is the lowest (fastest) time by any vehicle
- t_{run} is the time recorded for a vehicle’s run to be scored.
- t_{max} is the minimum of the following:
• The longest (slowest) time by any vehicle, or
• 1.5 times t_{min}

Vehicles with acceleration times that are more than 1.5 times that of the fastest vehicle will not receive a score for this event. Teams attempting the event, but exceeding the time limit will be classified as “Excess Time.”

Article 4 - Traction

D.4.1 - Objective
This event tests the vehicle’s relative ability to climb an incline from a standing start or pull a designated object, e.g. progressive weight skid, vehicle, or chain along a flat surface.

D.4.2 - Course
The traction event may take place on a straight or curved course. The organizer will determine the hill elevation (height), hill inclination (grade), and hill surface or object to be pulled.

D.4.3 - Procedure
After a safety check, vehicles are positioned at the start line of the course. The track worker will check that the driver is ready to begin. Once the driver is ready, the track worker will signal the driver to proceed down the course. After completing the run on the course, the vehicle will be directed to the course exit.

Vehicles may not continue the attempt after they have stopped on the course.

D.4.4 - Penalties
Driving Off Course – Score as maximum progress at point of exiting the course.

D.4.5 - Signals and Signage
See D.8.9 - Signals and Signage.

D.4.6 - Scoring
The maximum number of available points for the traction event is 75 points.

Scoring will be based on the better of the two attempts. Timing will be performed with an electronic timing system. If a vehicle cannot complete the course and get a time, it will be scored on the distance that it travels before stopping. Once the vehicle stops moving forward the attempt is over and the attempt is scored for distance at that point.

D.4.6.1 - Method 1 (Different Distances)
If none of the vehicles are able to complete the course, then:

The following equation will be used for the traction score (S_{tr}):

$$S_{tr} = 75 \times \frac{d_{run} - d_{min}}{d_{max} - d_{min}}$$

Where:
d_{min} is the shortest distance by any vehicle

d_{run} is the distance traveled for the vehicle to be scored.

d_{max} is the longest distance by any vehicle.

D.4.6.2 - Method 2 (Fixed Distance, All Succeed)

If there is (a) a set maximum distance and (b) all teams succeed in completing a full distance hill or pull, then the score will be based on the time for the full distance.

The following equation will be used for the traction score (S_{tr}):

$$S_{tr} = 75 \times \frac{t_{\text{max}} - t_{\text{run}}}{t_{\text{max}} - t_{\text{min}}}$$

Where:

t_{min} is the lowest (fastest) time by any vehicle

t_{run} is the time recorded for a vehicle’s run to be scored.

t_{max} is the minimum of the following:

- The longest (slowest) time by any vehicle, or
- 2.5 times t_{min}

D.4.6.3 - Method 3 (Fixed Distance, Some Succeed)

If there is (a) a set maximum distance and (b) at least one team climbs the hill or makes a full pull and others do not, then the vehicles going the full distance (Group I) will be scored based on time and the vehicles that fail to climb the hill or make a full pull (Group II) will be scored based on distance.

Group 1

$$S_{tr\ 1} = 75 \times \frac{t_{\text{min}}}{t_{\text{run}}}$$

Where:

t_{min} is the lowest (fastest) time by any vehicle

t_{run} is the time recorded for a vehicle’s run to be scored.
Group 2

\[S_{tr\ 2} = \min(S_{tr\ 1}) \times \frac{d_{run}}{d_{course}} \]

Where:

- \(d_{run} \) is the distance recorded for a vehicle to be scored.
- \(d_{course} \) is full length of the course to be run by the vehicle.

Article 5 - Maneuverability

D.5.1 - Objective
Maneuverability is designed to assess each vehicle’s agility and handling ability over off-road terrain. Teams will attempt to maneuver through the course with a minimum time.

D.5.2 - Course
The course may consist of a variety of challenges at the organizer’s option, possibly including tight turns, pylon maneuvers, ruts, bumps, drop-offs, sand, rocks, gullies, logs, and inclines.

D.5.3 - Procedure
After a safety check, vehicles are positioned at the start line of the course. The track worker will check that the driver is ready to begin. Once the driver is ready, the track worker will signal the driver to proceed down the course. After completing the run on the course, the vehicle will be directed to the course exit.

Each vehicle may make two (2) attempts at the course.

D.5.4 - Signals and Signage
See D.8.9 - Signals and Signage.

D.5.5 - Penalties
The organizer may select a maximum of two (2) penalty types imposed for different violations to account for differences in the length or design of specific event courses. Penalties are times added to the total time a vehicle took to complete the course for a given run. The organizer will announce penalties on their event website or at a mandatory team meeting.

Example Penalties:
- Pylon or Obstacle Moved – 2 seconds
- Missed Gate – 10 seconds

D.5.6 - Scoring
The maximum number of available points for the maneuverability event is 75 points.

Scoring will be based on the best of the two attempts. Only vehicles that complete the maneuverability course within a time not exceeding 2.5 times that of the fastest vehicle will receive a score. If a vehicle is
on the course for a time that exceeds 2.5 times the fastest time recorded to that point, then the attempt may be declared over and the vehicle may be removed from the course and scored as “Excess Time.”

Maneuverability scoring is based on the vehicle’s time to complete the course. Penalties are added to the vehicle’s time for a given run.

The following equation will be used for the maneuverability score (S_{ma}):

$$S_{ma} = 75 \times \frac{t_{max} - t_{run}}{t_{max} - t_{min}}$$

Where:

- t_{min} is the lowest (fastest) time by any vehicle
- t_{run} is the time recorded for a vehicle’s run to be scored.
- t_{max} is the minimum of the following:
 - The longest (slowest) time by any vehicle, or
 - 2.5 times t_{min}

Article 6 - Specialty Events

Specialty events are designed to test the vehicle under unique off-road conditions that might be unique or specific to a particular Baja SAE® competition site.

Examples of specialty events are: Rock Crawl, Mud Bog, and Suspension.

The dynamic events at competitions differ. Teams should check the websites of the specific competitions they are planning to enter and consider any unique requirements that might affect the design and fabrication of their vehicle.

D.6.1 - Objective

Specialty events may require the vehicle to complete a course in a minimum time or proceed a maximum distance. The objective of specialty events is at the discretion of the organizer.

D.6.2 - Course

The course of specialty events is at the discretion of the organizer.

D.6.3 - Procedure

After a safety check, vehicles are positioned at the start line of the course. The track worker will check that the driver is ready to begin. Once the driver is ready, the track worker will signal the driver to proceed down the course. After completing the run on the course, the vehicle will be directed to the course exit.

Each vehicle may make two (2) attempts at the course.

D.6.4 - Penalties

Penalties for specialty events are at the discretion of the organizer.
D.6.5 - Signals and Signage
See D.8.9 - Signals and Signage.

D.6.6 - Scoring
The scoring system and penalties employed by the organizer must adhere to one of the options defined for either (a) the Maneuverability event, or (b) the Traction event. The maximum number of available points for the specialty event is 75 points.

Article 7 - Endurance

D.7.1 - Objective
The endurance event assesses each vehicle’s ability to operate continuously and at speed over rough terrain with obstacles in potentially adverse weather conditions (rain, snow, etc.). The endurance event may be run for time or for distance. The default is four (4) hours and the vehicle with the most laps (orbits) around the course is declared the winner.

D.7.2 - Course
The endurance course is a closed loop measuring approximately 0.8 km (0.5 mi.) to 3.2 km (2 mi.). The endurance course will feature different surfaces (e.g. dirt, grass, sand, mud, gravel, stone, and asphalt). The endurance course will feature various obstacles and terrain to test the vehicle’s durability, traction, and speed.

D.7.3 - Procedure

D.7.3.1 - Pre-Gridding
Teams will pre-grid before the endurance event and be placed into starting position based on each team’s performance in a previous dynamic event, or set of dynamic events, to be determined by the organizer. Pre-gridding will close at a pre-determined time by SAE and the organizer. Teams late to pre-grid will be gathered in the fuel area and released to the track after the race has started.

D.7.3.2 - Compliance Check
During pre-gridding, or after pre-gridding closes, vehicle engines will be started and the NTI will perform a compliance check. During compliance check and gridding, the driver and vehicle may only have one team member accompany them. The compliance check includes, but is not limited to inspection of the following:

- Helmet Certification
- Helmet Fitment and Securement
- Safety Harness
- Driver Equipment
- Driver Wrist Band
- Fire Extinguisher
- Engine Kill Switches
- Brake System

Unprepared drivers or out-of-compliance vehicles deemed unsafe or not ready to drive will be ordered out of the gridding line by NTI and sent to the paddocks to make corrections. Vehicles not ready to drive must check in at the fuel area to be admitted to the track.
D.7.3.3 - Gridding
Once the compliance check is complete, vehicles begin to form the grid and approach the start line as marshaled by track workers or NTI.

D.7.3.4 - Starting
The endurance event may be started by a standing staggered start, rolling start, or holeshot. A standing staggered start is used to release cars in groups of two with a delay in between groups. A rolling start allows a run-in distance to the start line. The rolling start may be performed on the course. A holeshot is a start where all vehicles are lined up equidistant to the first course feature and started all at once. The start type will be determined by SAE and the organizer.

All vehicles will be considered to have begun the race simultaneously at the time when the starter releases the first vehicle onto the course regardless of their actual position in the grid.

D.7.3.5 - Running
Endurance will be run as either:

- A single four (4) hour race
- A predetermined and published distance
- Elimination heats followed by a final in which the total time of one elimination heat plus the final is 4 hours. The organizer (with approval from SAE International) will announce the structure of the event prior to the start.

Vehicles will safely navigate the course and accrue laps (orbits) to be counted and scored.

D.7.3.6 - Driver Change
Vehicle drivers may be changed at any time. Driver changes occur in the Fueling Area.

SAE reserves the right to require at least one driver change during the endurance event.

D.7.3.7 - Refueling
D.7.3.7.1 - Location
The Fueling Zone (FZ) consists of the Fueling Area (FA), Fuel Quarantine Area (FQ), Crew Area (CA) and Harness Check Area (HC).

Only three (3) people from any given team, including drivers, are allowed within the Fueling Zone (FZ) at any one time.

Active refueling occurs in the FA. All stored fuel not in use is located in the FQ. Vehicles and drivers will proceed to the HC before returning to the track.

D.7.3.7.2 - Procedure
Vehicles requiring fuel will exit the track at the designated location and proceed at walking-speed to the fueling area.

Before refueling, the vehicle must be stopped, the engine shut off, and the driver completely out of the vehicle. The driver may not be tethered in any way, by harness, communications equipment, or clothing.
Before refueling, a team’s pit crew member must have a fire extinguisher ready and pointed at the fuel transfer point on the vehicle. The exiting driver is the only team member permitted to remove the fuel tank cap.

A team refueling their vehicle before the driver is clear of the vehicle or who fail to have a fire extinguisher present and pointed at the fuel transfer point will be penalized.

The fueling area is to be clear of anyone not immediately servicing a car.

A fire extinguisher must be present and pointed at ANY transfer of fuel, including re-filling a smaller container from a larger one when a vehicle is not present.

D.7.3.7.3 - Fuel Containers
Vehicles must be refueled using a fuel container no larger than 5.7 L (1.5 gal.) in volume.

D.7.3.7.4 - Fuel Storage
Each team shall have no more than two (2) approved fuel containers in the Fueling Area (FA). Any additional fuel containers, full or empty, shall be placed in the Fuel Quarantine area (FQ) for the duration of the endurance event. All fuel must be in the Fueling Zone (FZ) by the time endurance pre-gridding closes and safety checks begin. Any team found with fuel in the paddocks during the endurance event or found removing fuel from the Fueling Zone (FZ) without an escort from a NTI or designated official prior to the end of the endurance event will be assessed a penalty.

If a team wishes to remove their fuel from the Fueling Zone and leave the event site prior to the end of the endurance event, they must remove their “Passed Tech” sticker and provide it to a National Technical Inspector in exchange for their fuel.

D.7.3.7.5 - Repairs in Fueling Area
No work requiring a tool may be performed in the Fueling Area. Teams are allowed to make adjustments that do not require any tools. Examples include driver harness, seat position, spring-damper pre load, etc.

Teams may only have approved fuel containers (see B.6.8 - Fuel Containers), fire extinguishers, and funnels, if required, in the Fueling Area. Tools of any kind, backpacks, wagons, extra driver equipment, and coolers are specifically prohibited. Extra driver equipment may be brought to the Fueling Area for use but extra driver equipment may not be stored in the Fueling Area.

D.7.3.8 - Service

D.7.3.8.1 - Remote Pit
SAE and the organizer may elect to create a remote pit for minor repairs and adjustments.

D.7.3.8.2 - Paddocks
Teams whose vehicle requires service and repairs may exit the track at the designated location and proceed at walking speed to their paddock. No repairs are permitted on the course at any time.

D.7.3.9 - Recovery
Vehicles disabled on the endurance course may be recovered by track workers, or by a designated recovery crew. Track workers will attempt to assist disabled vehicles. It is the driver’s responsibility to assist and cooperate with the course marshals in removing the vehicle. Drivers may not exit the vehicle to
start the engine. Drivers must be seated and secured in the vehicle before track workers will attempt to
restart the engine.

If track workers are unable to assist a disabled vehicle, a recovery crew will transport the disabled vehicle
to the paddocks. Drivers being towed to the paddock are required to remain seated and secured in their
vehicle with all safety equipment on.

Recovery crews are dispatched and operate on a “first come, first serve” basis. No priority will be given to
any team over another.

D.7.3.10 - Finish
The Endurance event is finished when the lead car crosses the finish line after the time limit or distance
has been reached. Vehicles remaining on the track will be allowed to finish their lap. Vehicles in the fuel
zone will not be allowed back on the track after this time.

As vehicles cross the finish line, track workers will direct vehicles to the paddocks or the impound area (if
required). All post-event traffic shall be at walking-speed.

D.7.3.11 - Impound
SAE reserves the right to impound and inspect any vehicle during or after the endurance event. NTI will
direct and instruct teams in impound how to proceed.

Teams may be required to surrender their engine per D.8.8 - Surrender of Engine.

D.7.4 - Penalties
NTI are the only personnel permitted to call and assess penalties during the endurance event. NTI are
distributed throughout the endurance course during the event. Penalties during the endurance race will be
signaled from and vehicles ordered off the track from the black flag area. NTI may stop any vehicle, at
any time, if they believe it no longer complies with the requirements and restrictions of the rules. All timed
penalties are enforced from when the vehicle is in the black flag area, i.e. the time spent being towed
back to the pits, does not count towards the penalty.

D.7.4.1 - Driver Equipment
Any driver that is not using all of the approved and required drivers’ equipment will be flagged.

D.7.4.2 - Mechanical Faults
All cars must remain in the as-approved condition in order to compete; any condition that is deemed to
not meet this requirement will be flagged to make necessary repairs or adjustments. If a vehicle is
stopped by officials for a mechanical fault, the fault must be corrected before it may reenter the event.

D.7.4.3 - Vehicle Assists
Certain areas of the endurance course have been identified as difficult obstacles. If a vehicle is assisted
two times on the same obstacle, the vehicle will be black flagged and the driver warned that one more
assist will result in removal of the vehicle for the remainder of the event.

D.7.4.4 - Roll Over
If a vehicle rolls over (end over end, or over on its side) anywhere on the track two times (in any location,
regardless of driver), the vehicle will be black flagged and the driver warned that one more roll over will
result in removal of the vehicle for the remainder of the event. Roll overs will be judged at the discretion of NTI. Any vehicle that rolls over must be inspected by NTI before returning to the track.

D.7.4.5 - Endurance Penalty Table

<table>
<thead>
<tr>
<th>Penalty Type</th>
<th>Infraction</th>
<th>1st Offense</th>
<th>2nd Offense</th>
<th>3rd Offense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Possession of fuel or fuel is removed from the fuel area after endurance gridding</td>
<td>10 minutes</td>
<td>20 minutes</td>
<td>DQ</td>
</tr>
<tr>
<td>Fuel</td>
<td>Unchecked fuel removed from fuel area during endurance</td>
<td>10 minutes</td>
<td>20 minutes</td>
<td>DQ</td>
</tr>
<tr>
<td>Fuel</td>
<td>Fueling on the track</td>
<td>DQ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fuel</td>
<td>Use of tools on the car in the fuel area</td>
<td>Warning</td>
<td>10 minutes</td>
<td>DQ</td>
</tr>
<tr>
<td>Fuel</td>
<td>More than 3 people in the fuel area</td>
<td>Warning</td>
<td>10 minutes</td>
<td>DQ</td>
</tr>
<tr>
<td>Fuel</td>
<td>Fueling with the driver in the car</td>
<td>30 minutes</td>
<td>DQ</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>Fire extinguisher not ready during fueling</td>
<td>10 minutes</td>
<td>20 minutes</td>
<td>DQ</td>
</tr>
<tr>
<td>Fuel</td>
<td>Run out of fuel on the track</td>
<td>5 minutes</td>
<td>5 minutes</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Driving</td>
<td>Vehicle Roll Over</td>
<td>-</td>
<td>Warning</td>
<td>DQ</td>
</tr>
<tr>
<td>Driving</td>
<td>Passing during a yellow flag</td>
<td>Warning</td>
<td>Discretionary</td>
<td>Discretionary</td>
</tr>
<tr>
<td>Driving</td>
<td>Failure to stop for black flag when signaled</td>
<td>10 minutes</td>
<td>Discretionary</td>
<td>Discretionary</td>
</tr>
<tr>
<td>Driving</td>
<td>Leaving the course and advancing</td>
<td>5 minutes</td>
<td>Discretionary</td>
<td>Discretionary</td>
</tr>
<tr>
<td>Driving</td>
<td>Aggressive driving</td>
<td>10 minutes</td>
<td>DQ</td>
<td>-</td>
</tr>
<tr>
<td>Driving</td>
<td>Speeding in the pit or paddocks</td>
<td>5 minutes</td>
<td>20 minutes</td>
<td>DQ</td>
</tr>
</tbody>
</table>

Figure D-2: Endurance Event, Table of Penalties

D.7.5 - Signals and Signage
See D.8.9 - Signals and Signage

D.7.6 - Scoring

D.7.6.1 - Points
The maximum possible points for endurance are 400 points.

D.7.6.2 - Determination of Winner
a. The team that completes the distance of the competition first or the greatest number of scored laps in the time set for the competition will be declared the winner.
b. In competitions of a given distance, the checkered flag will be given first to the leading car, then to the other finishers as they cross the finish line.

c. In competitions of a timed length, the checkered flag will be given first to the leading car as it crosses the finish line at or after the expiration of the specified duration, then to the other finishers in the order they cross the finish line.

d. If the leading car is not running at the expiration of the time limit, the checkered flag will be given to the next highest running car in the same manner.

D.7.6.3 - Scored Laps

Scored laps are the number of full laps actually completed during the endurance event. Only full laps count, partial laps do not count for score. A vehicle must cross the timing line under its own power for a lap to be counted.

D.7.6.4 - Finish Order

Finish order is the sequence in which vehicles cross the finish line after the lap scoring period has ended. Finish order determines the ranking of teams completing the same number of laps. For example, if the top four teams finish with the same number of laps, then they will be ranked 1st to 4th based on their finish order.

D.7.6.5 - Bonus Points

Bonus points are additional points awarded to the first ten (10) vehicles on the leading (winning) lap, as separated by finish order as required, in part to differentiate teams finishing with the same number of scored laps. Up to 10 bonus points will be awarded in the inverse order of finish. Thus, the first vehicle to cross the finish line in the highest lap group will receive bonus points equal to the number of cars on the lead lap (max of 10); the second vehicle will receive one less bonus point etc. Example:

<table>
<thead>
<tr>
<th>Position</th>
<th>Lap</th>
<th>Bonus Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>47</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure D-3: Endurance Event, Table of Bonus Points

D.7.6.6 - Score

Endurance scoring is based on number of laps the vehicle completes in the allowed time:

\[S_{en} = \left(400 \times \frac{l_{team} - l_{max}}{l_{max} - l_{min}} \right) + P_{bonus} \]

Where:
\(L_{\text{max}} \) is the maximum number of laps completed by any vehicle.

\(L_{\text{team}} \) is the number of laps completed by the vehicle to be scored.

\(L_{\text{min}} \) is the minimum number of laps completed by any vehicle.

\(P_{\text{bonus}} \) is the number of bonus points awarded to a qualifying vehicle.

D.7.6.7 - Heat Plus Final Scoring

When endurance is run as heats plus a final, the points for the event will be distributed between the heats and the final in proportion to the time/distance of each stage.

Thus, if endurance is run as one (1) hour eliminations plus a three (3) hour final, the four hundred (400) total points will be allocated as one hundred (100) points to each elimination heat plus three hundred (300) points to the final.

Article 8 - General Event Procedures and Regulations

D.8.1 - Safety

D.8.1.1 - Safety Vision

Safety is the primary consideration in the design of Baja SAE® vehicles and the conduct of the competitions. No event or competition is so important that teams and organizers cannot take the time to work safely. All participants will strive to create a safe competition where all participants return home in the same condition in which they arrived.

D.8.1.2 - First Aid / CPR / AED

While medical services are always on-site at Baja SAE® events, teams are encouraged to be familiar with or trained in first aid, CPR, and the use of AED machines.

D.8.1.3 - Approaching Others

All participants are empowered to directly and respectfully approach others if they see a hazardous or unsafe condition and notify the person in danger. Persons approached regarding a safety concern are obligated to respectfully acknowledge the situation and are encouraged to thank those who approached them for their concern.

D.8.1.4 - Responsibility

At all performance events, it is the responsibility of the team to ensure both the vehicle and driver meet and follow all the requirements and restrictions of the rules.

D.8.1.5 - Personal Protective Equipment

Teams are required to furnish and use their own PPE, appropriate for the task being performed. This includes, but is not limited to:

- Safety Glasses
- Gloves
- Closed Toe Shoes
- Arc Flash Protection
- Hearing Protection
D.8.1.6 - Key Hazards
All participants are encouraged to pay careful attention to the following situations:

D.8.1.6.1 - Ascending and Descending
Maintain 3-point contact when ascending and descending stairs, ladders, steps, or tailgates. Watch for obstructions at the beginning and end of travel.

D.8.1.6.2 - Pinch Points
Stay clear of pinch points from rotating machinery, doors, and other equipment.

D.8.1.6.3 - Hazardous Release of Energy
Stay clear of sparks, chips, swarf, or other high-energy material. Check circuits for live wires before working on them. Depressurize high pressure air, oil, or water systems before working on them. Take care when working around presses, rams, or other hydraulic equipment. Use care when jacking or lifting vehicles or other objects.

D.8.1.6.4 - Vehicle Operations
Do not drive when distracted. Utilize a spotter when backing a vehicle, especially with a trailer.

D.8.1.6.5 - Walking / Path of Travel
Take care to keep all walking paths clear of slip, trip, and fall hazards.

D.8.2 - Rules of Conduct

D.8.2.1 - Sportsmanlike Conduct
All Baja SAE® participants can be proud of the excellent sportsmanship and cooperation among teams that are two of the hallmarks of the series. Good conduct and compliance with the rules and the official instructions are expectations and requirements for every team member.

Unsportsmanlike conduct can include arguments with officials, disobedience of official instructions and the use of abusive or threatening language to any official or other participant. Depending on the seriousness of the infraction the penalty for such actions can range from a deduction of up to fifty percent (50%) of the team’s points to expulsion of the entire team. Penalties of this type will only be imposed after a complete review of the incident by the organizer and SAE International staff.

D.8.2.1.1 - Prohibited Material
Alcoholic beverages, firearms, weapons of any type, and illegal materials are prohibited at Baja SAE® sites during the competition. The penalty for violation of this rule is the immediate expulsion of the entire team, not just the individual(s) involved. This rule applies to team members, advisors and any individuals working with the team on-site.

D.8.2.1.2 - Tobacco Products and Electronic Cigarettes
The use of all tobacco products or using e-cigarettes on-site is prohibited.

D.8.2.1.3 - Footwear
All individuals on-site shall wear durable and sturdy footwear. Open-toed shoes are explicitly prohibited.
D.8.2.1.4 - Parties
Disruptive parties either on or off-site must be prevented by the faculty advisor or team captain.

D.8.2.1.5 - Housekeeping
Clean-up of trash and debris is the responsibility of the teams. Please make an effort to keep the paddock area clean and uncluttered. At the close of the day, each team must clean their work area.

D.8.2.1.6 - Site Condition
Please help the organizers keep the site clean. The sites used for Baja SAE® are generally private property and should be treated as such. Competitors are reminded that they are guests. All trash should be placed in the receptacles provided. Glass is not allowed on the grounds. Failure to clean the premises will result in an unsportsmanlike conduct penalty. Competitors are encouraged to clean their areas after meals.

D.8.2.1.7 - Personal Transportation
The use of motorcycles, quads, bicycles, scooters, skateboards, rollerblades or similar person-carrying or motor driven devices by team members and spectators in any part of the competition area, including the paddocks is prohibited.

D.8.2.2 - Spectator Rules

D.8.2.2.1 - General
The organizers typically do not have a direct line of communication with spectators other than on-the-spot at the competition; thus, the competitors, faculty and volunteers are expected to help inform the spectators of the safety rules and help restrict spectators to the spectator areas.

D.8.2.2.2 - Alcoholic Beverages
Spectators may not drink or possess alcoholic beverages at any competition location.

D.8.2.2.3 - Access Restriction
Spectators must keep-back a specified distance from the event areas as decided by SAE International and the organizers and from any area where vehicles are operating under power. Motor vehicle competitions are potentially dangerous and safety rules will be strictly enforced.

D.8.2.2.4 - Children
A competition site is not a safe place for children and unsupervised young people. Spectators who fail to strictly control their children will be asked to leave the site.

D.8.2.2.5 - Expulsion
The course officials and organizers have the absolute right to restrict spectator access to any parts of the site and to eject anyone who violates safety rules or ignores the instructions of officials.

D.8.2.2.6 - Unsafe Conduct
All participants are required to exercise safe practices and avoid unsafe activities at all times during the competition. The event organizer and SAE have the discretionary authority to impose a just penalty for any conduct deemed unsafe. All team members will be held to this rule.
D.8.3 - Paddock Rules

D.8.3.1 - Refueling
Before refueling, the vehicle must be stopped, the engine shut off, and the driver completely out of the vehicle. The driver may not be tethered in any way, by harness, communications equipment, or clothing.

Before refueling, a team’s pit crew member must have a fire extinguisher ready and pointed at the fuel transfer point on the vehicle. The exiting driver is the only team member permitted to remove the fuel tank cap.

A team refueling their vehicle before the driver is clear of the vehicle or who fail to have a fire extinguisher present and pointed at the fuel transfer point will be penalized. For infractions occurring prior to the endurance race, the penalty will be assessed during the endurance race.

D.8.3.2 - Speed Limit
When a vehicle is driven anywhere except within the practice area or on event courses it must move at walking speed with a team member walking along side at a normal pace. During the performance events when the excitement is high, it is particularly important that vehicles move at a walking pace in the paddocks. The walking speed rule will be strictly enforced and discretionary point penalties will be assessed for violations.

D.8.3.3 - Escort Required
When a vehicle is driven anywhere except within the practice area or on event courses, it must have a team member escort the vehicle. The escort shall walk with the vehicle on the right side (to stay close to the firewall kill switch) and shall remain in the view of the driver at all times. The escort should act as a spotter to the driver, paying special attention to the vehicle’s blind spots and other vehicles.

Under no circumstances may anyone other than the driver, ride in or on a vehicle.

Escorts shall remain clear and not touch the vehicle when it is in motion and remain within line-of-sight to the driver.

D.8.3.4 - Team Work Area
The team’s work area should be clearly defined and should be kept uncluttered at all times. When a team leaves their area, it must be left clean.

D.8.3.5 - Team Vehicles
Only the Baja SAE® vehicles themselves and the teams’ support trucks and trailers are allowed in the paddocks.

D.8.3.6 - Access Restriction
The organizers may limit the paddocks to team members, faculty advisors and competition officials.

D.8.3.7 - Compressed Gases
Teams shall safely store compressed gas cylinders. Cylinders shall be upright and properly secured by chain or other method, capped when not in use, and stored such that cylinder temperature is below 52 deg. C (125 deg F).
D.8.3.8 - Driving Restrictions

D.8.3.8.1 - Off Site Operation
During the competition, Baja SAE® vehicles may only be driven between the paddocks and an event site, during official practice, or in the events themselves and only after the vehicle has passed technical inspection.

Driving off site is explicitly prohibited. Teams found to have driven their vehicle at an off-site location during the event may be expelled from the competition.

D.8.3.8.2 - Driver Equipment
Drivers not wearing the proper equipment will not be permitted to drive, and may have their competition driver’s privileges revoked.

D.8.4 - Meetings
All team members identified as captains or drivers and all faculty advisors MUST attend all meetings as designated; Attendance at meetings is mandatory. Failure to attend meetings can result in disqualification of members or the entire team.

D.8.5 - Tie Breakers

D.8.5.1 - Non-Endurance Events
Ties for non-endurance dynamic events will be broken by comparing the score of the second best time or distance for the event in question. If the tie remains, the tie stands.

D.8.5.2 - Endurance Event
Ties in the endurance race will be judged by the endurance event judge and may remain a tie.

D.8.5.3 - Overall Event
Ties for the overall winner will be broken in the following order:

1) Endurance Score
2) Total Dynamic Events Score
3) Total Static Events Score

If a tie remains after the prescribed tie breakers, the tie stands for the overall winners.

D.8.6 - Pre Inspection Operation
Vehicles may not be started or driven prior to passing technical inspection, except as required as part of the inspection process itself.

D.8.7 - Inspection
Any vehicle may be impounded and inspected anytime during the competition. Any vehicle found to have: altered or substituted its parts or equipment since passing technical inspection or an engine in violation of the rules may receive a point deduction of 75 points each time it is found in violation.
D.8.8 - Surrender of Engine
The organizers and SAE International may, recall the engine from any vehicle in the competition in exchange for a new Briggs and Stratton engine. Recalled engines will not be returned and will be inspected at Briggs and Stratton’s facilities to confirm compliance with the rules.

D.8.9 - Signals and Signage
Baja SAE® competitions may use some or all of the signals and signage presented in this section.

D.8.9.1 - Green Flag
a) When displayed at a starting line or when reentering the course: The event has started; enter the course under the direction of the starter.
b) When running on the course: Course is clear, proceed.

Note: Green flags may also be represented by green lights at designated locations.

Figure D-4: Signals and Signage, Green Flag

D.8.9.2 - Yellow Flag
When displayed, there is a dangerous situation on the track beyond the flag station. Reduce speed and be prepared to take evasive action or stop on the track. Passing is not permitted, unless directed by the course workers.

Note: Yellow flags may also be represented by yellow lights at designated locations.

Figure D-5: Signals and Signage, Yellow Flag
D.8.9.3 - Red Flag
When displayed, there is a dangerous situation somewhere on the track requiring a full-course stop. Come to an immediate, safe, and controlled stop on the course. Passing is not permitted. Pull to the side of the track as much as possible to keep the course open. Follow course worker directions.

Note: Red flags may also be represented by red lights at designated locations.

D.8.9.4 - Black Flag (Displayed)
a) Pull into the penalty box for a discussion with the NTI or other official concerning an incident. A penalty may be assessed for the incident.
b) Pull into the penalty box for a mechanical inspection of the car; a dangerous condition has been observed on the vehicle.

D.8.9.5 - Black Flag (Furled and Pointed)
Warning, the officials are watching this vehicle’s driving – obey the event rules.

D.8.9.6 - Checkered Flag
The event has been completed. Exit the course as directed by event officials.
D.8.9.7 - Directional Arrow
Orange triangle with a 1.5:1 height to base ratio, with or without forked base. White or black trim is optional. The minimum base width is 6 inches.

D.8.9.8 - Control Zone Boundary
This sign denotes the beginning of the control zone around an event. Beyond this sign, the vehicle and driver must be ready to run the event. The driver must have all required equipment on and the vehicle may not have any adjustments made. Beyond this sign, one team member is allowed to accompany the vehicle. Teams entering the control zone not ready to run or with more than one attendant may be sent to the back of the line.
D.8.9.9 - Time Control Marshal
This sign denotes the location of the time control marshal. The time control marshal will position your vehicle to start the event. At this location NTI may do a final compliance check on your vehicle.

Figure D-11: Signals and Signage, Time Control Marshal

D.8.9.10 - Start Line
This sign denotes the location of the event starting line. At this location the driver will be given the signal from the start marshal to begin the run.

Figure D-12: Signals and Signage, Start Line

D.8.9.11 - Finish Line
This sign denotes the end of the run, where a time or distance will be taken. Proceed through the finish line to record your score.
Figure D-13: Signals and Signage, Finish Line

D.8.9.12 - Stop Line
All vehicles are required to stop at the stop line at the end of the run. At this location, proceed only upon the instruction of the Finish Marshal.

Figure D-14: Signals and Signage, Stop Sign

D.8.9.13 - End Control Zone
This sign denotes the end of the control zone boundary.

Figure D-15: Signals and Signage, End Control Zone
D.8.9.14 - Begin Fuel Zone
This sign indicates the beginning of the fuel zone where fueling is permitted.

Figure D-16: Signals and Signage, Begin Fuel Zone

D.8.9.15 - End Fuel Zone
This sign denotes the end of the fuel zone. Beyond this sign fueling is not permitted unless approved by the Fuel Zone Official.

Figure D-17: Signals and Signage, End Fuel Zone

D.8.9.16 - Begin Service
This sign denotes the beginning of the service area (paddocks and/or hot pit). Beyond this sign, vehicle adjustments, service, and/or maintenance are permitted.

Figure D-18: Signals and Signage, Begin Service Area
D.8.9.17 - End Service

This sign denotes the end of the service area (paddocks and/or hot pit). Beyond this sign, vehicle adjustments, service, and/or maintenance are not permitted.

Figure D-19: Signals and Signage, End Service Area
Part E: Appendices

Article 1 - SAE Technical Standards

The SAE Technical Standards Board (TSB) has made the following SAE Technical Standards available online, at no cost, for use by Collegiate Design teams. Standards are important in all areas of engineering and teams are encouraged to review these documents and become familiar with their contents and use.

The technical documents listed below include both (1) standards that are identified in the rules and (2) standards that the TSB and the various rules committees believe are valuable references or which may be mentioned in future rule sets.

All Collegiate Design Series teams registered for competitions in North America have access to all the standards listed below - including standards not specific to your competition.

SAE Technical Standards included in the CDS Rules:

Baja SAE®

- J586 - Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width
- J759 - Lighting Identification Code
- J994 - Alarm - Backup – Electric Laboratory Tests
- J1741 - Discriminating Back-Up Alarm Standard

SAE Clean Snowmobile Challenge

- J192 - Maximum Exterior Sound Level for Snowmobiles
- J1161 - Sound Measurement – Off-Road Self-Propelled Work Machines Operator-Work Cycle

Formula Hybrid

- J1318 - Gaseous Discharge Warning Lamp for Authorized Emergency, Maintenance and Service Vehicles
- J1673 - High Voltage Automotive Wiring Assembly Design

Formula SAE®

- SAE 4130 steel is referenced but no specific standard is identified
- SAE Grade 5 bolts are required but no specific standard is identified

SAE Supercmileage®

- J586 - Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width

SAE Technical Standards for Supplemental Use

Baja SAE®

- J98 – Personal Protection for General Purpose Industrial Machines – Standard
- J183 – Engine Oil Performance and Engine Service Classification - Standard
• J306 – Automotive Gear Lubricant Viscosity Classification - Standard
• J429 – Mechanical and Material Requirements for Externally Threaded Fasteners – Standard
• J512 – Automotive Tube Fittings - Standard
• J517 – Hydraulic Hose - Standard
• J1166 – Sound Measurement – Off-Road Self-Propelled Work Machines Operator-Work Cycle
• J1194 – Rollover Protective Structures (ROPS) for Wheeled Agricultural Tractors
• J1362 – Graphical Symbols for Operator Controls and Displays on Off-Road Self-Propelled Work Machines - Standard
• J1614 – Wiring Distribution Systems for Construction, Agricultural and Off-Road Work Machines
• J1703 - Motor Vehicle Brake Fluid - Standard
• J2030 – Heavy Duty Electrical Connector Performance Standard
• J2402 – Road Vehicles – Symbols for Controls, Indicators and Tell-Tales – Standard

SAE Clean Snowmobile Challenge

• J44 – Service Brake System Performance Requirements – Snowmobiles - Recommended Practice
• J45 – Brake System Test Procedure – Snowmobiles – Recommended Practice
• J68 – Tests for Snowmobile Switching Devices and Components - Recommended Practice
• J89 – Dynamic Cushioning Performance Criteria for Snowmobile Seats - Recommended Practice
• J92 – Snowmobile Throttle Control Systems – Recommended Practice
• J192 – Maximum Exterior Sound Level for Snowmobiles - Recommended Practice
• J288 – Snowmobile Fuel Tanks - Recommended Practice
• J1161 – Operational Sound Level Measurement Procedure for Snowmobiles - Recommended Practice
• J1222 – Speed Control Assurance for Snowmobiles - Recommended Practice
• J1279 – Snowmobile Drive Mechanisms - Recommended Practice
• J1282 – Snowmobile Brake Control Systems - Recommended Practice
• J2567 – Measurement of Exhaust Sound Levels of Stationary Snowmobiles - Recommended Practice

Formula SAE®

• J183 – Engine Oil Performance and Engine Service Classification - Standard
• J306 – Automotive Gear Lubricant Viscosity Classification - Standard
• J429 – Mechanical and Material Requirements for Externally Threaded Fasteners – Standard
• J452 - General Information – Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys – Information Report
• J512 – Automotive Tube Fittings - Standard
• J517 – Hydraulic Hose - Standard
• J637 – Automotive V-Belt Drives – Recommended Practice
• J829 – Fuel Tank Filler Cap and Cap Retainer
• J1153 - Hydraulic Cylinders for Motor Vehicle Brakes – Test Procedure
• J1154 – Hydraulic Master Cylinders for Motor Vehicle Brakes - Performance Requirements - Standard
• J1703 - Motor Vehicle Brake Fluid - Standard
• J2045 – Performance Requirements for Fuel System Tubing Assemblies - Standard
• J2053 – Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles – Standard

Formula Hybrid

• J1772 – SAE Electric Vehicle and Plug in Hybrid Conductive Charge Coupler

All CDS Competitions

• J1739 – Potential Failure Mode and Effects Analysis in Design (Design FMEA) Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) and Potential Failure Mode and Effects Analysis for Machinery (Machinery FMEA)

Article 2 - List of Abbreviations

AED – Automatic External Defibrilator
AN/MS – Army/Navy Military Standard
CDS – Collegiate Design Series
CPR – Cardio Pulmonary Resuscitation
CV – Constant Velocity
CVT – Continuously Variable Transmission
DF – Design Finals
DQ - Disqualified
FA – Fuel Area
FEA – Finite Element Analysis
FQ – Fuel Quarantine
FZ – Fuel Zone
ID – Inside Diameter

IMechE – Institution of Mechanical Engineers
LED – Light Emitting Diode
MB - Megabyte
NTI – National Technical Inspectors
OEM – Original Equipment Manufacturer
PDF – Portable Document Format by Adobe
RF – Radio Frequency
RPM – Revolutions per minute
SAE – Society of Automotive Engineers
SFI – SEMA Foundation Inc.
VDI – Association of German Engineers
XLS – Excel Spreadsheet by Microsoft